Tìm x,y thuộc Z để
(x-y)2+(x-1)+(y+1)=2
giúp tui zvới
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
1)
Từ: \(\frac{3}{y}=\frac{7}{x}\)=>\(\frac{x}{7}=\frac{y}{3}\)
x+16=y =>x-y=-16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)(vì x-y=-16)
=>\(\frac{x}{7}=-4=>x=-28\)
=>\(\frac{y}{3}=-4=>y=-12\)
Vậy x=-28 ;y=-12
2)
=>x2-3x+5 chia hết cho x-3
mà (x-3)2 chia hết cho x-3
=>x2-3x+5 -(x-3)2 chia hết cho x-3
=> x2-3x+5 -x2-9 chia hết cho x-3
=>-3x+(-4) chia hết cho x-3
lại có : 3.(x-3) chia hết cho x-3
=>-3x-(-4)+3.(x-3) chia hết cho x-3
=>-3x+(-4)+3x-9 chia hết cho x-3
=>-13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
=>x\(\in\){2;4;-9;16}
Giả thiết tương đương xy + yz + zx = 0.
Từ đó dễ dàng chứng minh được \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3xy.yz.zx=3x^2y^2z^2\Leftrightarrow\dfrac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{3x^2y^2z^2}=\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{zx}{y^2}\).
\(\frac{x}{2}-\frac{1}{y}=\frac{2}{3}\)
<=>\(\frac{x}{2}-\frac{2}{3}=\frac{1}{y}\)
<=>\(\frac{3x-4}{6}=\frac{1}{y}\)
<=>\(y\left(3x-4\right)=6\)
Ta có bảng sau:
3x-4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
y | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
x | -2/3 | 1/3 | 2/3 | 1 | 5/3 | 2 | 7/3 | 10/3 |
Vì x;y là số nguyên nên có 2 cặp số nguyên thỏa mãn là ..........