Bài 4: ( 2,0 điểm) Cho cân tại A. Kẻ AH vuông góc BC tại H.
a) ( 0,75 điểm) Chứng minh : ABH = ACH
b) ( 0,75 điểm) Từ H kẻ HI // AB ( I thuộc AC). Chứng minh: tam giác AIH cân.
c) ( 0,5 điểm ) Chứng minh :I là trung điểm của AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABH và tam giác ACH ta có
AB = AC (gt)
AH _ chung
^AHB = ^AHC = 900
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam giác ABC cân tại A
AH là đường cao đồng thời là đường trung tuyến
=> H là trung điểm BC
c, Do H là trung điểm BC => HB = 6/2 = 3 cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\)
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
hay ΔAMN cân tại A
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
b) Xét ΔAMD và ΔCMH có
MA=MC(gt)
\(\widehat{AMD}=\widehat{CMH}\)(hai góc đối đỉnh)
MD=MH(gt)
Do đó: ΔAMD=ΔCMH(c-g-c)
Suy ra: AD=HC(Hai cạnh tương ứng)
c) Ta có: ΔAMD=ΔCMH(cmt)
nên \(\widehat{MAD}=\widehat{MCH}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//HC(Dấu hiệu nhận biết hai đường thẳng song song)
hay AD//HB
Xét tứ giác ABHD có
AD//BH(cmt)
AD=BH(=HC)
Do đó: ABHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AB//DH(Hai cạnh đối)
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔACD có AC=AD
nên ΔACD cân tại A
c: Xét ΔDCB có
CA là đường trung tuyến
CA=DB/2
Do đó:ΔDCB vuông tại C
=>DC⊥BC
mà AH⊥BC
nên DC//AH
d: ta có: DC//AH
nên \(\widehat{DCB}=90^0\)
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
b: Xét ΔEDH vuông tại D và ΔEDC vuông tại D có
ED chung
HD=CD
Do đó: ΔEDH=ΔEDC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét tứ giác AHCE có
D là trung điểm chung của AC và HE
\(\widehat{AHC}=90^0\)
Do đó: AHCE là hình chữ nhật
=>EC//AH
c: Xét ΔAHC có
CF,HD là trung tuyến
CF cắt HD tại Q
=>Q là trọng tâm
=>HQ=2/3HD=2/3*1/2*HE=1/3HE
=>HE=3HQ
a: Xét ΔAID vuông tại I và ΔAIH vuông tại I có
AI chung
ID=IH
Do đó: ΔAID=ΔAIH
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét tứ giác ABKH có
I là trung điểm chung của AK và BH
=>ABKH là hbh
=>BK//AH
=>BK vuông góc BC
c: KB=AH
AH<AB
=>KB<AB
d: Xét ΔBCK có CH/CB=CM/CK
nên HM//BK
=>HM vuông góc BC
mà AH vuông góc BC
nên A,H,M thẳng hàng
a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có
HA=HK
HB=HI
=>ΔABH=ΔKIH
b: ΔABH=ΔKIH
=>góc ABH=góc KIH
=>AB//IK
c: IK//AB
AB vuông góc AC
=>IK vuông góc AC
=>I,K,E thẳng hàng
d: Xét tứ giác ABKI có
H là trung điểm chung của AK và BI
AK vuông góc BI
=>ABKI là hình thoi
=>AB=AI=IK
=>IK=ID
=>góc IKD=góc IDK
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: HI//AB
=>góc IHA=góc BAH
=>góc IHA=góc IAH
=>ΔIAH cân tại I
c: Xét ΔBAC có
H là trung điểm của CB
HI//AB
=>I là trung điểm của AC