Cho PT: \(x^2-2mx+3m-4=0\)
a, Tìm m để PT đã cho có nghiệm là 2
b, Tìm m để PT đã cho không có nghiệm là 3
c, Tìm m để PT đã cho có 2 nghiệm trái dấu
d, Tìm m để PT đã cho có 2 nghiệm dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
a) dễ rồi bạn chỉ việc bế x = 1/2 vào tìm m bình thường
b) mx - 2 + m = 3x
<=> ( m - 3 )x + m - 2 = 0
Để pt có nghiệm duy nhất thì m - 3 ≠ 0 <=> m ≠ 3
Khi đó nghiệm duy nhất là x = -m+2/m-3
a thay vào mà tính, dễ rồi nên mình ko làm nữa nhé
b, Để phương trình có 2 nghiệm phân biệt thì delta > 0
hay \(4m^2-4\left(m-2\right)\left(m-4\right)=4m^2-4\left(m^2-6m+8\right)=6m-8>0\)
\(\Leftrightarrow-8>-6m\Leftrightarrow m>\dfrac{4}{3}\)
c, Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-4}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-2}{m-4}\end{matrix}\right.\)
Lại có: \(\left(x_1+x_2\right)^2=\dfrac{4m^2}{\left(m-4\right)^2}\Rightarrow x_1^2+x_2^2=\dfrac{4m^2}{\left(m-4\right)^2}-2x_1x_2\)
\(=\dfrac{4m^2}{\left(m-4\right)^2}-\dfrac{2m-4}{m-4}=\dfrac{4m^2-\left(2m-4\right)\left(m-4\right)}{\left(m-4\right)^2}\)
\(=\dfrac{4m^2-2m^2+12m-16}{\left(m-4\right)^2}=\dfrac{2m^2+12m-16}{\left(m-4\right)^2}\)
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
a: Khi x=2 thì pt sẽlà 2^2-4m+3m-4=0
=>-m=0
=>m=0
c: Để PT có hai nghiệm tráo dấu thì 3m-4<0
=>m<4/3
d: Δ=(-2m)^2-4(3m-4)
=4m^2-12m+16
=(2m-3)^2+7>=7
=>Phương trình luôn có hai nghiệm pb
Để PT có 2 nghiệm dương thì 2m>0 và 3m-4>0
=>m>4/3