Cho tam giác MNP vuông cân tại M có NP= căn bậc 2 của 32 cm, khi đó độ dài cạnh MN bằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
theo định lí Pi-ta-go ta có :
cạnh huyền\(^2\)=cạnh góc vuông\(^2\)+cạnh góc vuông\(^2\)
mà cạnh huyền bằng căn bậc 2 của 32
=> cạnh huyền bằng 6
=> cạnh góc vuông\(^2\)+cạnh góc vuông\(^2\)= 6\(^2\)
=>cạnh góc vuông\(^2\)+cạnh góc vuông\(^2\)= 32
=> cạnh góc vuông\(^2\)= \(\frac{32}{2}\)=16
=>cạnh góc vuông = 4
không biết có đúng không nữa
Vì Tam giác `MNP` cân tại `M -> MN = MP,` \(\widehat{N}=\widehat{P}\)
Mà `MN= 3 cm, `\(\widehat{N}=60^0\)
`-> MN = MP = 3 cm, `\(\widehat{N}=\widehat{P}=60^0\)
Xét Tam giác `MNP:`
\(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
`->`\(\widehat{M}+60^0+60^0=180^0\)
`->`\(\widehat{M}=60^0\)
Ta có:
\(\widehat{M}=\widehat{N}=\widehat{P}=60^0\)
`->` \(\text {Tam giác MNP là tam giác đều}\)
`-> MN = MP = NP = 3 cm.`
Ta có
\(NP=\sqrt{32}=4\sqrt{2}cm\)
Mà \(\Delta MNP\) vuông cân
\(\Rightarrow MN=NP\)
Áp dụng định lí Pytago ta có
\(NP^2=NM^2+MP^2\\ mà.MN=NP\\ \Rightarrow MN=\dfrac{NP}{2}=.....\)