K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

bạn ơi chép đầu bài sai rồi

27 tháng 11 2016

Giả sử a^3+b^3+c^3=3abc

<=> a^3+b^3+c^3-3abc=0

<=> (a+b)^3 -3ab(a+b) -3abc +c^3=0

<=>[(a+b)^3+c^3] -3ab(a+b+c) =0

<=> (a+b+c)[(a+b)^2-(a+b)c+c^3] -3ab(a+b+c)=0

<=> (a+b+c)[(a+b)^2-(a+b)c+c^3-3ab]=0 

vì a+b+c =0 => đpcm

26 tháng 8 2018

a) sau khi nhân vô + rút gọn ( câu này gg có á)

P = a3 + b3 + c3 - 3abc

b) a3 + b3 + c3 = 3abc?

a3 + b3 + c3 - 3abc = 0

theo câu b)

(a + b + c)(a2 + b2 + c2 - ab - bc - ca) =0

\(\Rightarrow\) a+b+c=0 hoặc

a2 + b2 + c2 - ab - bc -ca = 0

a2 - 2ab +b2 +b2 - 2bc + c2 + c2 - 2ac +a2 =0

(a-b)2 + (b-c)2 + (c-a)2 = 0

\(\Rightarrow\) a=b=c

26 tháng 8 2018

hki Qqwwqe tại sao a2 - 2ab + b2 +b2 -2bc +c2+c2-2ac +a2=0

14 tháng 10 2018

Sửa đề: Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\)

Chứng minh: \(a^3-2ab+2c=0\)

Giải:

Ta có:

\(a^3-3ab+2c=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=x^3+y^3+3xy\left(x+y\right)-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)

\(=3\left(x^3+y^3\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)=3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)\)

\(=3\left(x+y\right)\left(x^2-xy+y^2+xy-x^2-y^2\right)=3\left(x+y\right).0\)

\(=0\) (đpcm)

Ta có:\(x+y=a\)

=>\(x^2+2xy+y^2=a^2\)

=>\(x^2+y^2=a^2-2xy=a^2-2b\left(đpcm\right)\)

Ta lại có:\(x^3+3x^2y+3xy^2+y^3=a^3\)

=>\(x^3+y^3+3xy\left(x+y\right)=a^3\)

=>\(x^3+y^3=a^3-3xy\left(x+y\right)=a^3-3ab\left(đpcm\right)\)

b)\(a+b+c=0\) =>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\) =>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\) =>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\) =>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

10 tháng 9 2017

Tại sao lại có +6abc vậy bạn , ở câu b) đó hiuhiu

\(a+b+c=0\)

=>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\)

=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)

=>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

7 tháng 11 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(1\right)\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

13 tháng 6 2016

thế còn c ở đâu?

14 tháng 6 2016

cảm ơn bạn nhìu