K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018


\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\) 

.............................. 
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

Cộng vế với vế của 99 bất đẳng thức trên ta được: 
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99\cdot\frac{1}{10}=\frac{99}{10}\)

=> A = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}+\frac{1}{10}=\frac{100}{10}=10\)

1 tháng 3 2020

a)Ta có:\(\sqrt{17}>\sqrt{16}\)

             \(\sqrt{26}>\sqrt{25}\)

\(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)

\(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)

Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)

\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)

\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)

15 tháng 3 2020

Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

Khi đó : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}\)\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}\)(100 số hạng \(\frac{1}{\sqrt{100}}\))

\(=\frac{1}{\sqrt{100}}.100=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)(ĐPCM)

12 tháng 4 2018

Ta có : 

\(1>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

Do từ \(1\) đến \(100\) có \(100-1+1=100\) số tự nhiên nên có \(100\) phân số \(\frac{1}{\sqrt{100}}\) ta được : 

\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\) ( đpcm ) 

Vậy \(A>10\)

Chúc bạn học tốt ~ 

15 tháng 9 2016

1/ Trước hết ta chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng : 

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

                                            \(=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\) (đpcm)

15 tháng 9 2016

Với mọi \(n\ge2\)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)

                        \(=2\left(\sqrt{n+1}-\sqrt{n}\right)\) (1)

Lại có : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\)

                                     \(=2\left(\sqrt{n}-\sqrt{n-1}\right)\) (2)

Từ (1) và (2) suy ra \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Áp dụng với n = 2,3,4,...,100 được đpcm.

 

3 tháng 11 2015

a)\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

b) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\)

18 tháng 1 2020

+ \(2\cdot\frac{1}{\sqrt{n}+\sqrt{n+1}}< \frac{2}{\sqrt{n}+\sqrt{n}}< 2\cdot\frac{1}{\sqrt{n-1}+\sqrt{n}}\) \(\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

\(\Rightarrow A>2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{101}-\sqrt{100}\right)\)

\(\Rightarrow A>2\left(\sqrt{101}-\sqrt{2}\right)>17\)

+ \(A< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\Rightarrow A< 2\left(\sqrt{100}-1\right)=18\)