K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{4}\ne\dfrac{-1}{-m}\)

\(\Leftrightarrow-m^2\ne-4\)

\(\Leftrightarrow m^2\ne4\)

hay \(m\notin\left\{2;-2\right\}\)

c) Để hệ phương trình vô nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}\ne\dfrac{2m}{6+m}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{m}{4}\ne\dfrac{2m}{6+m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\left(m+6\right)\ne8m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2+6m-8m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-2m\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\left(m-2\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left\{{}\begin{matrix}m\ne0\\m-2\ne0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left\{{}\begin{matrix}m\ne0\\m\ne2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=-2\)

b) Để hệ phương trình có vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{6+m}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m}{4}=\dfrac{1}{m}\\\dfrac{m}{4}=\dfrac{2m}{6+m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\left(6+m\right)=8m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\6m+m^2-8m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-2m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\left(m-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left[{}\begin{matrix}m=0\\m-2=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=2\)

17 tháng 1 2022

a) \(\left\{{}\begin{matrix}mx+y=1.\\x+my=m+1.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-mx.\\x+m\left(1-mx\right)=m+1.\left(1\right)\end{matrix}\right.\) 

Xét (1): \(x+m\left(1-mx\right)=m+1.\Leftrightarrow x+m-m^2x-m-1=0.\Leftrightarrow\left(1-m^2\right)x-1=0.\left(2\right)\)

Để hệ phương trình có nghiệm duy nhất. \(\Leftrightarrow\) (2) có nghiệm duy nhất. 

\(\Leftrightarrow1-m^2\ne0.\Leftrightarrow m^2\ne1.\Leftrightarrow m\ne\pm1.\)

b) Để hệ phương trình có vô số nghiệm. \(\Leftrightarrow\) (2) có vô số nghiệm.

\(\Leftrightarrow\left\{{}\begin{matrix}1-m^2=0.\\-1=0.\end{matrix}\right.\) (vô lý).

\(\Rightarrow m\in\phi\).

c) Để hệ phương trình có vô nghiệm. \(\Leftrightarrow\) (2) có vô nghiệm.

\(\Leftrightarrow\left\{{}\begin{matrix}1-m^2=0.\\-1\ne0.\end{matrix}\right.\)\(\Leftrightarrow1-m^2=0.\Leftrightarrow m^2=1.\Leftrightarrow m=\pm1.\)

 

Bạn ghi lại phương trình đi bạn

Trường hợp 1: m=0

Phương trình sẽ là \(-2\cdot\left(0-1\right)x+0-3=0\)

=>2x-3=0

hay x=3/2

=>Phương trình có đúng 1 nghiệm

Trường hợp 2: m<>0

\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)

\(=4m^2-8m+4-4m^2+12m=4m+4\)

a: Để phương trình có nghiệm kép thì 4m+4=0

hay m=-1

c: Để phương trình vô nghiệm thì 4m+4<0

hay m<-1

d: Để phương trình có nghiệm thì 4m+4>=0

hay m>=-1

a: Để hệ có duy nhất 1 nghiệm thì \(\dfrac{m}{4}< >\dfrac{-1}{-m}=\dfrac{1}{m}\)

=>m^2<>4

=>m<>2 và m<>-2

b: Để hệ có vô số nghiệm thì \(\dfrac{m}{4}=\dfrac{-1}{-m}=\dfrac{2m}{m+6}=\dfrac{1}{m}\)

=>m^2=4 và 2m^2=m+6

=>m=2

c: Để hệ vô nghiệm thì m/4=1/m<>2m/m+6

=>m=-2

NV
5 tháng 2 2021

\(\left\{{}\begin{matrix}m^2x+my=m\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=-1\\x+my=m+1\end{matrix}\right.\)

- Với \(m=\pm1\Rightarrow0.x=-1\) hệ vô nghiệm

- Không tồn tại m để hệ có vô số nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất

27 tháng 2 2021

`a,x-3y=2`

`<=>x=3y+2` ta thế vào phương trình trên:

`2(3y+2)+my=-5`

`<=>6y+4+my=-5`

`<=>y(m+6)=-9`

HPT có nghiệm duy nhất:

`<=>m+6 ne 0<=>m ne -6`

HPT vô số nghiệm

`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`

HPT vô nghiệm

`<=>m+6=0,-6 ne 0<=>m ne -6`

b,HPT có nghiệm duy nhất

`<=>m ne -6`(câu a)

`=>y=-9/(m+6)`

`<=>x=3y+2`

`<=>x=(-27+2m+12)/(m+6)`

`<=>x=(-15+2m)/(m+6)`

`x+2y=1`

`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`

`<=>(2m-33)/(m+6)=1`

`2m-33=m+6`

`<=>m=39(TM)`

Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`

b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)

Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)

\(\Leftrightarrow2m-33=m+6\)

\(\Leftrightarrow2m-m=6+33\)

hay m=39

Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1