Chứng minh rằng:
a/n(n+a) = 1/n - 1/n-a (Với a;n thuộc N* )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Trường hợp 1: x=3k
\(\Leftrightarrow A=\left(3k+3\right)\left(3k+7\right)\left(3k+11\right)⋮3\)
Trường hợp 2: x=3k+1
\(\Leftrightarrow A=\left(3k+4\right)\left(3k+8\right)\left(3k+12\right)⋮3\)
Trường hợp 3: x=3k+2
\(\Leftrightarrow A=\left(3k+5\right)\left(3k+9\right)\left(3k+13\right)⋮3\)
A = 8.n + 111......11111
= ( 8 + 111...11111 ) . n
= 9999.......9 . n chia hết cho 9 ( dấu hiệu nhận biết )
=> ĐPCM
Tổng các chữ số của số 111...1 (n chữ số 1) là:1+1+1+...+1=1.n
=>tổn các chữ số của A là:
8.n+1.n =n.(8+1)=9n
Vì 9n chia hết cho 3
=>Tổng các chữ số của số A chia hết cho 3
=>A chia hết cho 3 (ĐPCM)
1/
Gọi số cần tìm là a
Ta có :
a : 17 dư 8
=> a - 8 chia hết cho 17
=> a + 17 - 8 chia hết cho 17
=> a + 9 chia hết cho 17
a : 25 dư 16
=> a - 16 chia hết cho 25
=> a + 25 - 16 chia hết cho 25
=> a + 9 chia hết cho 25
=> a + 9 thuộc BC ( 17 ; 25 )
Ta có :
17 = 17
25 = 52
=> BCNN ( 17 ; 25 ) = 17 . 52 = 425
=> BC ( 17 ; 25 ) = B ( 425 ) =
=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }
=> a = { -9 ; 416 ; 941 ; 1366 ; .... }
Mà a là số tự nhiên nhỏ nhất
=> a = 416
Vậy số cần tìm là 416
2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath
a=11...1:2n số 1 nên a=(10^2n - 1)/9
b=11...1:n+1 số 1 nên b=[10^(n+1) - 1]/9
c=66...6:n số 6 nên c=6*(10^n -1)/9
a+b+c+8=(10^2n - 1)/9 + [10^(n+1) - 1]/9 + 6*(10^n -1)/9 +72/9
=(10^2n - 1 + 10*10n -1 +6*10^n - 6 + 72)/9
=[ (10^n)^2 + 2*10^n(5+3) +64]/9
=[ (10^n)^2 + 2*8*10^n + 8^2]/9
= (10^n + 8 )^2/9
= [(10^n + 8 )/3]^2
vì 10^n +8=100...0 +8:tổng các chữ số chia hết cho 3 nên (10^n + 8 )/3 là 1 số nguyên =>[(10^n + 8 )/3]^2 là số chính phương
a=1.....1(2n số 1)=1....1(n số 1).10n +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1) ⇒ 10n =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương
a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)
\(=5^n.51+8.64^n\)
Có \(64\equiv5\) (mod 59)
\(\Rightarrow64^n\equiv5^n\) (mod 59)
\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)
mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59)
\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)
b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)
Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)
Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)
\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)
\(\Rightarrow16^n-9^n-7⋮3\) (II)
Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8)
\(\Rightarrow9^n+7⋮8\) mà \(16^n=2^n.8^n⋮8\)
\(\Rightarrow16^n-9^n-7⋮8\) (III)
Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)
Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\)
\(\Rightarrow\) Đpcm
a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n
=5n.51+8.64n=5n.51+8.64n
Có 64≡564≡5 (mod 59)
⇒64n≡5n⇒64n≡5n (mod 59)
⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)
mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59)
Lời giải:
Đặt $n=2k+1$
Số số hạng: $\frac{n-1}{2}+1=\frac{2k+1-1}{2}+1=k+1$
Tổng A là:
$A=\frac{(k+1)(2k+1+1)}{2}=\frac{2(k+1)^2}{2}=(k+1)^2$ là số chính phương (đpcm)
????????????????????
?????????????????????????