mọi người ơi giúp em với ạ ! giải chi tiết giúp em ạ
1) 3x+2/6- 3x-2/4= 15/8
2) x+2/3+x - x/3-x= 8x-6/9-x ngũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,4x\left(1-x\right)-8=1-\left(4x^2+3\right)\\ \Leftrightarrow4x-4x^2-8=1-4x^2-3\\ \Leftrightarrow4x-4x^2-8-1+4x^2+3=0\\ \Leftrightarrow4x-6=0\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(2,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\\ \Leftrightarrow\left(2-3x\right)\left(x+11\right)-\left(2-3x\right)\left(5x-2\right)=0\\ \Leftrightarrow\left(2-3x\right)\left(x+11-5x+2\right)=0\\ \Leftrightarrow\left(2-3x\right)\left(-4x+13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
Ta có:
(2 - 3x)(x + 8) = (3x - 2)(3 - 5x)
⇔ (2 - 3x)(x + 8) - (3x - 2)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8) + (2 - 3x)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8 + 3 - 5x) = 0
⇔ (2 - 3x)(11 - 4x) = 0
⇔ 2 - 3x = 0 hay 11 - 4x = 0
⇔ 2 = 3x hay 11 = 4x
⇔ x = \(\dfrac{2}{3}\) hay x = \(\dfrac{11}{4}\)
Vậy tập nghiệm của pt S = \(\left\{\dfrac{2}{3};\dfrac{11}{4}\right\}\)
<=> (2-3x ) (x+8) + (2-3x ) (3-5x)=0
<=> (2-3x ) ( x+8 + 3-5x ) =0
<=> (2-3x ) ( 11 - 4x ) = 0
=> 2-3x =0 hoặc 11-4x =0
3x = 2 4x =11
x = 2/3 x = 11/4
a: \(\dfrac{3x+2}{4}-\dfrac{3x+1}{3}=\dfrac{5}{6}\)
=>3(3x+2)-4(3x+1)=10
=>9x+6-12x-4=10
=>-3x+2=10
=>-3x=8
=>x=-8/3
b: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{9x-10}{4-x^2}\)
=>(x-1)(x-2)-x(x+2)=-9x+10
=>x^2-3x+2-x^2-2x=-9x+10
=>-5x+2=-9x+10
=>x=2(loại)
\(1,\dfrac{x-2}{2}=3.\dfrac{1-3x}{6}\\ \Leftrightarrow\dfrac{x-2}{2}=\dfrac{1-3x}{2}\\ \Leftrightarrow x-2=1-3x\\ \Leftrightarrow4x=3\\ \Leftrightarrow x=\dfrac{3}{4}\)
2, mik có sửa đề vì đề của bn sai
ĐKXĐ:\(x\ne\pm\dfrac{1}{3}\)
\(\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}=\dfrac{5}{1-9x^2}\\ \Leftrightarrow\dfrac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\dfrac{\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\dfrac{5}{\left(1-3x\right)\left(1+3x\right)}=0\\ \Leftrightarrow\dfrac{1-6x+9x^2-1-6x-9x^2-5}{\left(1+3x\right)\left(1-3x\right)}=0\\ \Rightarrow-12x-5=0\\ \Leftrightarrow x=-\dfrac{5}{12}\left(tm\right)\)
a: =>6x-3x^2-5=4-3x^2-2
=>6x-5=2
=>6x=7
=>x=7/6
b: =>20x+5-12x^2-3x=6x^2-10x+3x-5
=>-12x^2+17x+5-6x^2+7x+5=0
=>-18x^2+24x+10=0
=>x=5/3 hoặc x=-1/3
\(\dfrac{1}{x-3}+\dfrac{3x^2-8x+10}{x^2-5x+6}-\dfrac{2x-4}{x-2}\left(ĐK:x\ne3;x\ne2\right)\)
\(=\dfrac{1}{x-3}+\dfrac{3x^2-8x+10}{x\left(x-2\right)-3\left(x-2\right)}-\dfrac{2x-4}{x-2}\)
\(=\dfrac{1}{x-3}+\dfrac{3x^2-8x+10}{\left(x-3\right)\left(x-2\right)}-\dfrac{2x-4}{x-2}\)
\(=\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}+\dfrac{3x^2-8x+10}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x-2+3x^2-8x+10-\left(2x^2-6x-4x+12\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{3x^2-7x+8-2x^2+10x-12}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2+3x-4}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2+3x-4}{x^2-5x+6}\)
\(1,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\\ \Leftrightarrow\dfrac{4\left(3x+2\right)}{24}-\dfrac{6\left(3x-2\right)}{24}-\dfrac{45}{24}=0\\ \Leftrightarrow12x+24-18x+12-45=0\\ \Leftrightarrow-6x-9=0\\ \Leftrightarrow x=-\dfrac{3}{2}\)
2, ĐKXĐ:\(x\ne\pm3\)
\(\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{x\left(3+x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{8x-6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6-3x-x^2-8x+6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow-2x^2-10x+12=0\\ \Leftrightarrow x^2+5x-6=0\\ \Leftrightarrow\left(x-1\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
\(a,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\)
\(\Leftrightarrow4\left(3x+2\right)-6\left(3x-2\right)=45\)
\(\Leftrightarrow12x+8-18x+12=45\)
\(\Leftrightarrow12x-18x=45-12-8\)
\(\Leftrightarrow-6x=25\)
\(\Leftrightarrow x=\dfrac{-25}{6}\)
Vậy \(S=\left\{\dfrac{-25}{6}\right\}\)
\(b,\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\left(ĐKXĐ:x\ne3;x\ne-3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(3-x\right)-x\left(3+x\right)=8x-6\)
\(\Leftrightarrow3x-x^2+6-2x-3x-x^2=8x-6\)
\(\Leftrightarrow-x^2-x^2+3x-2x-3x-8x=-6+6\)
\(\Leftrightarrow-2x^2-10x=0\)
\(\Leftrightarrow-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;5\right\}\)