K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2024

\(\dfrac{1}{x-3}+\dfrac{3x^2-8x+10}{x^2-5x+6}-\dfrac{2x-4}{x-2}\left(ĐK:x\ne3;x\ne2\right)\)

\(=\dfrac{1}{x-3}+\dfrac{3x^2-8x+10}{x\left(x-2\right)-3\left(x-2\right)}-\dfrac{2x-4}{x-2}\)

\(=\dfrac{1}{x-3}+\dfrac{3x^2-8x+10}{\left(x-3\right)\left(x-2\right)}-\dfrac{2x-4}{x-2}\)

\(=\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}+\dfrac{3x^2-8x+10}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x-2+3x^2-8x+10-\left(2x^2-6x-4x+12\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{3x^2-7x+8-2x^2+10x-12}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2+3x-4}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2+3x-4}{x^2-5x+6}\)

20 tháng 6 2017

\(B=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7x-14}+\dfrac{x-2}{3x-6}\right)+\dfrac{3\left(x^2-4\right)}{2x^2-8x+8}\)

\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x^2-4x+4\right)}\)

\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{1}{3}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)^2}\)

\(=\dfrac{x-2}{x+2}\cdot\dfrac{3\left(5x+10\right)+7\left(x-2\right)}{21\left(x-2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)

\(=\dfrac{1}{x+2}\cdot\dfrac{15x+30+7x-14}{21}+\dfrac{3x+6}{2\left(x-2\right)}\)

\(=\dfrac{22x+16}{21\left(x+2\right)}+\dfrac{3x+6}{2\left(x-2\right)}\)

\(=\dfrac{2\left(x-2\right)\left(22x+16\right)+21\left(x+2\right)\left(3x+6\right)}{42\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{\left(2x-4\right)\left(22x+16\right)+\left(21x+42\right)\left(3x+6\right)}{42\left(x^2-4\right)}\)

\(=\dfrac{44x^2+32x-88x-64+63x^2+126x+126x+252}{42x^2-168}\)

\(=\dfrac{107x^2+196x+188}{42x^2-168}\)

7 tháng 6 2017

giải pt sau

g) 11+8x-3=5x-3+x

\(\Leftrightarrow\) 8x + 8 = 6x - 3

<=> 8x-6x = -3 - 8

<=> 2x = -11

=> x=-\(\dfrac{11}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}

h)4-2x+15=9x+4-2x

<=> 19 - 2x = 7x + 4

<=> -2x - 7x = 4 - 19

<=> -9x = -15

=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)

Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}

g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)

<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)

<=> 9x + 6 - 3x + 1 = 10 + 12x

<=> 6x + 7 = 10 + 12x

<=> 6x -12x = 10-7

<=> -6x = 3

=> x= \(-\dfrac{1}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}

\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)

<=> x + 4 - 5x - 20 = 4x + 2 - 25

<=> x - 5x - 4x = 2-25-4+20

<=> -8x = -7

=> x= \(\dfrac{7}{8}\)

Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}

\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)

<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)

<=> 84x + 63 - 90x + 30 = 175x + 140 + 315

<=> 84x - 90x - 175x = 140 + 315 - 63 - 30

<=> -181x = 362

=> x = -2

Vậy tập nghiệm của PT là : S={-2}

K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)

<=> 25x + 10 - 80x - 10 = 24x + 12 - 150

<=> -55x = 24x - 138

<=> -55x - 24x = -138

=> -79x = -138

=> x=\(\dfrac{138}{79}\)

Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}

m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)

<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)

<=> 6x - 3 - 5x + 10 = x+7

<=> x + 7 = x+7

<=> 0x = 0

=> PT vô nghiệm

Vậy S=\(\varnothing\)

n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)

<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)

<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)

<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)

=> x= 1

Vậy S={1}

p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)

<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)

<=> 2x -2x + 1= x-36

<=> 2x-2x-x = -37

=> x = 37

Vậy S={37}

q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)

<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)

<=> 8 + 4x - 10x = 5 - 10x + 5

<=> 4x-10x + 10x = 5+5-8

<=> 4x = 2

=> x= \(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}

7 tháng 6 2017

g) \(11+8x-3=5x-3+x\)

\(\Leftrightarrow8+8x=6x-3\)

\(\Leftrightarrow8x-6x=-3-8\)

\(\Leftrightarrow2x=-11\)

\(\Leftrightarrow x=-\dfrac{11}{2}\)

h, \(4-2x+15=9x+4-2x\)

\(\Leftrightarrow-2x-9x+2x=4-4-15\)

\(\Leftrightarrow-9x=-15\)

\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

11 tháng 7 2017

\(D=\dfrac{x-2}{x+2}.\left(\dfrac{5x+10}{7x-14}+\dfrac{x-2}{3x-6}\right)+\dfrac{3x^2-12}{2x^2-8x+8}\)

\(D=\dfrac{x-2}{x+2}.\left(\dfrac{5\left(x+2\right)}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}\right)+\dfrac{3\left(x^2-4\right)}{2\left(x^2-4x+4\right)}\)

\(D=\dfrac{x-2}{x+2}.\dfrac{5\left(x+2\right)}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}.\dfrac{x-2}{x+2}+\dfrac{3\left(x^2-4\right)}{2\left(x^2-4x+4\right)}\)

\(D=\dfrac{5}{7}+\dfrac{x-2}{2\left(x+2\right)}+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)^2}\)

\(D=\dfrac{5}{7}+\dfrac{x-2}{2\left(x+2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}-\dfrac{-\left(x-2\right)}{2\left(x-2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}-\dfrac{-\left(x-2\right)+3x+2}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}-\dfrac{2x+4}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}+\dfrac{2\left(x-2\right)}{2\left(x-2\right)}=\dfrac{5}{7}+\dfrac{x-2}{x-2}\)

\(D=\dfrac{5}{7}+1=\dfrac{12}{7}\)

Vậy \(D=\dfrac{12}{7}\)

22 tháng 4 2017

Giải bài 50 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 50 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

29 tháng 6 2017

Phép chia các phân thức đại số

6 tháng 6 2019

a,\(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)

=> \(\frac{12x}{12}-\frac{\left(5x+2\right)2}{12}=\frac{\left(7-3x\right)3}{12}\)

=>\(\frac{12x-10x-4}{12}=\frac{21-9x}{12}\)

=>(khử mẫu)

=>\(12x-10x-4=21-9x\)

=>11x=25

=>x=25/11

b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)

=>30x+9=36+32x+24

=>32x+60=30x+9

=>2x=-51

=>x=-51/2

c: \(\Leftrightarrow2x-3\left(2x+1\right)=x+6x\)

=>7x=2x-6x-3

=>7x=-4x-3

=>11x=-3

=>x=-3/11

d: \(\Leftrightarrow4\left(x+2\right)-6x=3\left(1-2x+1\right)\)

=>4x+8-6x=3(-2x+2)

=>-2x+8+6x-6=0

=>4x+2=0

=>x=-1/2

16 tháng 1 2019

a)\(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{12x-10x-4}{12}=\dfrac{21-9x}{12}\)

\(\Leftrightarrow2x-4=21-9x\)

\(\Leftrightarrow2x-4-21+9x=0\)

\(\Leftrightarrow11x-25=0\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

b)\(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)

\(\Leftrightarrow\dfrac{30x+9}{36}=\dfrac{36+24+32x}{36}\)

\(\Leftrightarrow30x+9=60+32x\)

\(\Leftrightarrow30x+9-60-32x=0\)

\(\Leftrightarrow-2x-51=0\)

\(\Leftrightarrow x=-\dfrac{51}{2}\)

c)\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-6\)

\(\Leftrightarrow\dfrac{2x-6x-3}{6}=\dfrac{x-36}{6}\)

\(\Leftrightarrow-4x-3=x-36\)

\(\Leftrightarrow-4x-3-x+36=0\)

\(\Leftrightarrow-5x+33=0\)

\(\Leftrightarrow x=\dfrac{33}{5}\)

d)\(\dfrac{2+x}{3}-\dfrac{1}{2}x=\dfrac{1-2x}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{8+4x-6x}{12}=\dfrac{3-6x+3}{12}\)

\(\Leftrightarrow8-2x=6-6x\)

\(\Leftrightarrow8-2x-6+6x=0\)

\(\Leftrightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Tính lại xem đúng không nha haha

16 tháng 1 2019

a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{24x}{24}-\dfrac{4\left(5x+2\right)}{24}=\dfrac{6\left(7-3x\right)}{24}\)

\(\Leftrightarrow24x-4\left(5x+2\right)=6\left(7-3x\right)\)

\(\Leftrightarrow24x-20x-8=42-18x\)

\(\Leftrightarrow4x-8=42-18x\)

\(\Leftrightarrow4x+18x=42+8\)

\(\Leftrightarrow22x=50\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

Vậy S\(=\left\{\dfrac{25}{11}\right\}\)