chứng minh rằng \(\sqrt{2}\) + a ( a thuộc Z+) là số vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\sqrt{2}+a=b\)là số hữu tỉ
\(=>\sqrt{2}=b-a\)mà b là số hữu tỉ và a là số nguyên dương nên \(\sqrt{2}\) là số hữu tỉ (trái với đề bài)
=>\(\sqrt{2}+a\) với mọi \(a\)thuộc Z+
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Giả sử căn bậc 2 của 2 là 1 số hữu tỉ ( nếu kết quả ra số hữu tỉ thì điều giả sử là đúng còn nếu ko thì điều giả sử là sai)
Vậy căn 2 = a/b
với a,b thuộc Z, b khác 0 và a/b là 1 phân số tối giản.
bình phương hai vế ta được: 2=a^2/b^2
suy ra: a^2=2b^2
Vậy a^2 là số chẵn, suy ra a là số chẵn.
nên a=2m, m thuộc Z(m là 1 tham số), ta được:
(2m)^2=a^2=2b^2
suy ra: b^2=(2m)^2/2=2m^2
Vậy b^2 là số chẵn suy ra b là số chẵn.
nên b=2n, n thuộc Z(n là tham số)
Như vậy: a/b = 2m/2n ko phải là phân số tối giản, trái với giả sử ban đầu.
Vậy căn bậc 2 của 2 là 1 số vô tỉ.
Một số vô tỉ cộng một số nguyên thì ra số vô tỉ
\(\sqrt[]{2}\)+a là số vô tỉ
a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ
---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0
\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn
Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)
\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn
Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm
b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ
---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0
\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)
Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)
\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)
\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm
(Bài dài quá, giải mệt vler !!)
Bài giải
a, Ta có :
\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ
b, Ta có :
\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ
can bac 2 cua 2 la 1so vo ti nen cong voi a bat ki (a thuoc Z+)thi a van la so vo ti