Cho \(T=3+3^2+3^3+......+3^{99}\)
a, Tìm n thuộc N biết \(2T+3=3^{2n}\)
b,CMR \(4A+25\)là 1 lũy thừa của 5
Với \(A=5^2+5^3+....+5^{2012}\)
c,Cho \(C=1+4+4^2+......+4^{100}\)và \(B=4^{101}\)
CMR \(C< \frac{B}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a)Ta có:
\(\left(n+5\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1+6\right)⋮\left(n-1\right)\)
\(\Rightarrow6⋮\left(n-1\right)\)
Ta có bảng sau:
\(n-1\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -5 | -2 | -1 | 0 | 2 | 3 | 4 | 7 |
TM | TM | TM | TM | TM | TM | TM | TM |
b)\(\left(2n-4\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(2n+4-8\right)⋮\left(n+2\right)\)
\(\Rightarrow8⋮\left(n+2\right)\)
Ta có bảng sau:
n+2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -10 | -6 | -4 | -3 | -1 | 0 | 2 | 6 |
TM | TM | TM | TM | TM | TM | TM | TM |
c)Ta có:
\(\left(6n+4\right)⋮\left(2n+1\right)\)
\(\Rightarrow\left(6n+3+1\right)⋮\left(2n+1\right)\)
\(\Rightarrow1⋮\left(2n+1\right)\)
Ta có bảng sau:
2n+1 | -1 | 1 |
2n | -2 | 0 |
n | -1 | 0 |
d)Ta có:
\(\left(3-2n\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(-2n-2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\)
Ta có bảng sau:
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
\(T=3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3T=3^2+3^3+3^4+....+3^{100}\)
\(\Rightarrow3T-T=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+....+3^{99}\right)\)
\(\Rightarrow2T=3^{100}-3\)
\(\Rightarrow2T+3=3^{2n}=2.\frac{3^{100}-3}{2}+3=3^{2n}\)
\(\Rightarrow3^{100}-3+3=3^x\)
\(\Rightarrow3^{100}=3^x\)
\(\Rightarrow x=100\)
a)3T=3(3+32+...+399)
3T=32+33+...+3100
3T-T=(32+33+...+3100)-(3+32+...+399)
2T=3100-3.THay vào ta được 3100-3+3=32n
=>3100=32n =>100=2n =>n=50
b)5A=5(52+53+...+52012)
5A=53+54+...+52013
5A-A=(53+54+...+52013)-(52+53+...+52012)
4A=52013-52.Thay vào ta được :52013-52+25=52013 là 1 lũy thừa của 5
-->Đpcm
c)4C=4(1+4+...+4100)
4C=4+42+...+4101
4C-C=(4+42+...+4101)-(1+4+...+4100)
3C=4101-1 suy ra \(C=\frac{4^{101}-1}{3}\).Với \(\frac{B}{3}=\frac{4^{101}}{3}>\frac{4^{101}-1}{3}=C\)
-->Đpcm