K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 1 2018

Bài 1:

\(A=3^{3m^2+6n-61}+4\)

Ta thấy \(3m^2+6n-61=3(m^2+2n-21)+2=3t+2\)

Do đó: \(A=3^{3t+2}+4\)

Ta thấy: \(3^{3}\equiv 1\pmod {13}\Rightarrow 3^{3t}\equiv 1\pmod {13}\)

\(\Rightarrow 3^{3t+2}\equiv 9\pmod {13}\Leftrightarrow A=3^{3t+2}+4\equiv 13\equiv 0\pmod {13}\)

Do đó \(A\vdots 13\)

Để $A$ là số nguyên tố thì \(A=13\Leftrightarrow 3^{3m^2+6n-61}+4=13\)

\(\Leftrightarrow 3m^2+6n-61=2\)

\(\Leftrightarrow m^2+2n=21\)

Từ đây suy ra m lẻ. Mà: \(n>0\Rightarrow m^2=21-2n\leq 21\)

\(\Leftrightarrow m\leq 4\)

Do đó: \(m\in\left\{1;3\right\}\)

+) \(m=1\Rightarrow n=10\Rightarrow (m,n)=(1,10)\)

\(+)m=3\Rightarrow n=6\Rightarrow (m,n)=(3,6)\)

AH
Akai Haruma
Giáo viên
16 tháng 1 2018

Bài 2:
a)

Nếu \(a,b\) đều lẻ thì \(c\) chẵn. Mà $c$ là số nguyên tố nên $c=2$

\(\Rightarrow a,b< c\Leftrightarrow a,b< 2 \) (vô lý)

Nếu $a,b$ đều chẵn \(\Rightarrow a=b=2\Rightarrow c=8\not\in\mathbb{P}\)

Do đó $a,b$ khác tính chẵn lẻ. Không mất tính tổng quát giả sử $b=2$, còn $a$ lẻ

Ta có: \(a^2+2^a=c\)

Ta biết rằng một số chinh phương khi chia cho $3$ thì có dư là $0;1$.

Nếu \(a\vdots 3\Rightarrow a=3\Rightarrow c=17\in\mathbb{P}\)

Nếu \(a\not\vdots 3\Rightarrow a^2\equiv 1\pmod 3\)

Và: \(2^a\equiv (-1)^a\equiv -1\pmod 3\) (do a lẻ)

\(\Rightarrow a^2+2^a\equiv 1+(-1)\equiv 0\pmod 3\) hay \(c\equiv 0\pmod 3\)

\(\Rightarrow c=3\)

Do đó: \(2^a+a^2=3\Rightarrow 2^a<3\Rightarrow a<2 \) (vô lý)

Vậy \((a,b,c)=(3,2,17)\) và hoán vị $a,b$

b) \(a^2-2b^2=1\)

\(\Leftrightarrow a^2=2b^2+1\)

Ta biết rằng một số chính phương khi chia $3$ dư $0$ hoặc $1$

Nếu \(b^2\equiv 0\pmod 3\Rightarrow b\equiv 0\pmod 3\Rightarrow b=3\)

\(\Rightarrow a^2=19\Rightarrow a\not\in\mathbb{P}\)

Nếu \(b^2\equiv 1\pmod 3\Rightarrow 2b^2+1\equiv 3\equiv 0\pmod 3\Leftrightarrow a^2\equiv 0\pmod 3\)

\(\Rightarrow a\vdots 3\Rightarrow a=3\)

Thay vào suy ra \(b=2\) (thỏa mãn)

Vậy \((a,b)=(3,2)\)

12 tháng 8 2017

1) Nếu a/b>1 thì a/b>b/b<=>a>b
2)Nếu a>b thì a.z>b.z=>a/b>z/z<=>a/b>1
3)Nếu a/b<1 thì a/b<b/b<=>a<b
4)Nếu a<b=>a.z<b.z=>a/b<z/z<=>a/b<1

8 tháng 3 2016

Vì 0<a<b<c<d<e<f nên :

(a-b) < 0 ; (c-d) < 0 ; (e-f) < 0

và (b-a) > 0 ; (d-c) > 0 ; (f-e) > 0

Do đó (a-b)(c-d)(e-f) < 0 ; (b-a)(d-c)(f-e) > 0

Mà (a-b)(c-d)(e-f).x=(b-a)(d-c)(f-e) <=> x = -1

4 tháng 9 2017

a) A= {m; n}, biết 3 \(\le\) m < n < 5.(m, n \(\in\) N).

3 \(\le\) m < n < 5 \(\Rightarrow\) m = 3 ; n = 4. Vậy A = {3; 4}.

b) B = {a; b} biết 13< m \(\le\) n \(\le\)15 (a, b \(\in\) N).

13< m \(\le\) n \(\le\)15 \(\Rightarrow\) m hoặc n = 14; 15. Vậy B = {14; 15}.

Hỏi có bao nhiêu tập hợp A ; tập hợp B?

- Có 1 tập A và 1 tập hợp B.

26 tháng 7 2017

1. triathlon ride swim mind < âm i >

2. allergy play race say < âm a >

3. event spend tent other < âm e >

4. exercixe cycle circle picnic < âm c >

5 . week volunteer meet see < âm ee >

9 tháng 12 2018

a) X= { -1, 0, 1, 2, 3, 4 }

b) X= { -6, -5, -4, - 3, -2, -1 }

c) X= { 1, 2, 3, 4, 5, 6, 7 }

d) X= { 0, 1, 2, 3, 4, 5 }

9 tháng 12 2018

a, X= { -1, 0, 1, 2, 3, 4 }.

b, X= { -6, -5, -4, - 3, -2, -1 }.

c, X= { 1, 2, 3, 4, 5, 6, 7 }.

d, X= { 0, 1, 2, 3, 4, 5 }.

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bài 1

Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)

Biến đổi:

\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)

\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)

\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)

Áp dụng BĐT Am-Gm:

\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$

\(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)

\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)

\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bài 2a)

Ta có

\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)

\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)

\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)

\(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)

\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)

Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó