a) Tìm x, biết:
x 40
7 35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, SBC là: 115 * 35 + 0 =4025
b, SBC là : 407 * 125 + 215 =51090
Tuệ Nghi <3
a) Ta có : X:115=35 =>X=35x115=>X=4025
b)Ta có : X:407=125 dư 215=>X=125x407+125=>X=50875+125=>X=51000
c)Ta có : X:42=P dư R=>X=Px42+R
a) (x – 35).35 = 35 ó x – 35 = 1 ó x = 36
b) 43.(x – 19) = 86 ó x – 19 = 2 ó x = 21
c) (x + 7).34 = 2.34 ó x + 7 = 2
Điều này không xảy ra khi x là số tự nhiên. Vậy không có giá trị nào của x thỏa mãn
Bài 6. Tìm x ϵ N biết
a) (x –15) .15 = 0
b) 32 (x –10 ) = 32
c) ( x – 5)(x – 7) = 0
d) (x – 35).35 = 35
A.\(\left(x-15\right).15=0\)
\(x-15=0:15\)
\(x-15=0\)
\(x=15+0\)
\(x=15\)
B.\(32\left(x-10\right)=32\)
\(x-10=32:32\)
\(x-10=1\)
\(x=10+1\)
\(x=11\)
`a) `
`(x-15)xx15=0`
`<=> x-15 = 0 : 15`
`<=> x-15 = 0`
`<=> x = 0 + 15`
`<=> x =15`
`b)`
`32.(x-10)=32`
`<=> x - 10 = 32:32`
`<=>x-10=1`
`<=> x = 1+10`
`<=> x =11`
`c)`
`(x-5).(x-7)=0`
`<=>` \(\left[ \begin{array}{l}x-5 = 0\\x-7=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=5\\x=7\end{array} \right.\)
`d)`
`(x-35)xx35=35`
`<=> x - 35 = 35:35`
`<=> x - 35 = 1`
`<=> x = 1+35`
`<=> x = 36`
a:
\(70=2\cdot5\cdot7;84=2^2\cdot3\cdot7\)
=>\(ƯCLN\left(70;84\right)=2\cdot7=14\)
=>\(ƯC\left(70;84\right)=Ư\left(14\right)=\left\{1;2;7;14\right\}\)
\(70⋮x;84⋮x\)
=>\(x\inƯC\left(70;84\right)\)
=>\(x\inƯ\left(14\right)\)
=>\(x\in\left\{1;2;7;14\right\}\)
mà x>8
nên x=14
b: \(35=5\cdot7;45=3^2\cdot5\)
=>\(BCNN\left(35;45\right)=3^2\cdot5\cdot7=9\cdot35=315\)
\(a⋮35;a⋮45\)
=>\(a\in BC\left(35;45\right)\)
=>\(a\in B\left(315\right)\)
=>\(a\in\left\{315;630;945;...\right\}\)
mà 500<a<900
nên a=630
A) Để tìm số tự nhiên x, ta cần tìm ước chung lớn nhất của 70 và 84. Ta có:
70 : x = 84 : x
Đặt ước chung lớn nhất của 70 và 84 là d. Ta có:
70 = d * m1
84 = d * m2
Trong đó m1 và m2 là các số tự nhiên. Ta thấy d là ước chung lớn nhất của 70 và 84 khi và chỉ khi d là ước chung lớn nhất của m1 và m2.
Ta phân tích 70 và 84 thành các thừa số nguyên tố:
70 = 2 * 5 * 7
84 = 2^2 * 3 * 7
Ta thấy ước chung lớn nhất của 70 và 84 là 2 * 7 = 14.
Vì x > 8, nên x = 14.
B) Để tìm số tự nhiên a, ta cần tìm ước chung lớn nhất của a và 35, cũng như ước chung lớn nhất của a và 45. Ta có:
a : 35 = a : 45
Đặt ước chung lớn nhất của a và 35 là d1, và ước chung lớn nhất của a và 45 là d2. Ta có:
a = d1 * m1
a = d2 * m2
Trong đó m1 và m2 là các số tự nhiên. Ta thấy a là số tự nhiên khi và chỉ khi a là ước chung lớn nhất của m1 và m2.
Ta phân tích 35 và 45 thành các thừa số nguyên tố:
35 = 5 * 7
45 = 3^2 * 5
Ta thấy ước chung lớn nhất của 35 và 45 là 5.
Vì 500 < a < 900, nên a = 5.
lx đb
lỗi