Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, BM là đường phân giác.E và F là các hình chiếu A và C trên BM
a) Tính độ dài cạnh BC, AM
b) CM: AB^2=BE.BM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
=>\(\dfrac{AM}{6}=\dfrac{CM}{10}\)
=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)
mà AM+CM=AC=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{8}{8}=1\)
=>\(AM=3\cdot1=3\left(cm\right)\)
b: Xét ΔABM vuông tại A và ΔEBA vuông tại E có
\(\widehat{EBA}\) chung
Do đó: ΔABM đồng dạng với ΔEBA
c: Ta có: ΔABM vuông tại A
=>\(BM^2=BA^2+AM^2\)
=>\(BM^2=6^2+3^2=45\)
=>\(BM=3\sqrt{5}\left(cm\right)\)
Xét ΔBAM vuông tại A có AE là đường cao
nên \(BE\cdot BM=BA^2\)
=>\(BE\cdot3\sqrt{5}=6^2=36\)
=>\(BE=\dfrac{36}{3\sqrt{5}}=\dfrac{12}{\sqrt{5}}\left(cm\right)\)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{4}=\dfrac{DC}{3}\)
mà DB+DC=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{4}=\dfrac{DC}{3}=\dfrac{DB+DC}{4+3}=\dfrac{10}{7}\)
=>\(DB=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right);DC=3\cdot\dfrac{10}{7}=\dfrac{30}{7}\left(cm\right)\)
b: Ta có: DE\(\perp\)AB
AC\(\perp\)AB
Do đó: DE//AC
Xét ΔABC có DE//AC
nên \(\dfrac{DE}{AC}=\dfrac{BD}{BC}\)
=>\(\dfrac{DE}{6}=\dfrac{40}{7}:10=\dfrac{4}{7}\)
=>DE=24/7(cm)
Ta có: \(\widehat{EDA}=\widehat{DAC}\)(hai góc so le trong, ED//AC)
\(\widehat{DAC}=\widehat{DAE}\)
Do đó: \(\widehat{EDA}=\widehat{EAD}\)
=>EA=ED=24/7(cm)
ΔAEC vuông tại A
=>\(AE^2+AC^2=EC^2\)
=>\(EC^2=\left(\dfrac{24}{7}\right)^2+6^2=\dfrac{2340}{49}\)
=>\(EC=\dfrac{6\sqrt{65}}{7}\left(cm\right)\)
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=4,8cm
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)
=>\(\widehat{ACB}\simeq36^052'\)
b: ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF đồng dạng với ΔACB
=>\(\widehat{AFE}=\widehat{ABC}\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔBAC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{CB}\)
=>\(\dfrac{AM}{6}=\dfrac{CM}{10}\)
=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)
mà AM+CM=AC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{8}{8}=1\)
=>AM=3*1=3(cm)
b: Xét ΔBEA vuông tại E và ΔBAM vuông tại A có
\(\widehat{EBA}\) chung
Do đó: ΔBEA đồng dạng với ΔBAM
=>\(\dfrac{BE}{BA}=\dfrac{BA}{BM}\)
=>\(BA^2=BE\cdot BM\)