K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

Xét tam giác ABC vuông tại A có:

AB^2+AC^2=BC^2

5^2+12^2=BC^2

=>BC^2=169

=>BC=13.

Có:SABC=1/2.AB.AC=1/2.AH.BC=1/2.5.12=30

=>1/2.AH.13=30

=>AH=60/13

20 tháng 3 2022

ý 2

 

30 tháng 9 2018

a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm

b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm

c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm

26 tháng 1 2017

Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A ta có:

⇒ AH.BC = AB.AC

Hay 12.5 = AH.13 ⇒ AH = 60/13 ( cm )

Từ câu a ta có: Δ BHA ∼ Δ BAC ⇒ BH/BA = BA/BC hay BH/5 = 5/13 ⇔ BH = 25/13( cm )

Do đó: CH = BC - BH = 13 - 25/13 = 144/13( cm )

ABCHÁp dụng định lý Py - ta - Go vào tam giác ABC vuông tại A có :

AC2 = BC2 - AB2

AC2 = 52−32=3(AC>0)

Ta có : SABC=12AB.AC

Mà : SABC=12AH.BC

⇒ 12AB.AC=12AH.BC

⇔ AH = 

ACBH

a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881 

=> AB = 881

Lại có : BH.HC =  AH2

<=> HC.25 = 162

<=> HC.25 = 256

<=> HC = 256 : 25 = 10,24

Ta có : BC = HC + BH = 10,24 + 25 = 35,24 

Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576

=> AC = 

a: AC=căn 5^2-3^2=4cm

AH=3*4/5=2,4cm

BH=3^2/5=1,8cm

CH=5-1,8=3,2cm

b: \(BH=\sqrt{60^2:144}=5\left(cm\right)\)

BC=144+5=149cm

\(AB=\sqrt{5\cdot149}=\sqrt{745}\left(cm\right)\)

\(AC=\sqrt{144\cdot149}=12\sqrt{149}\left(cm\right)\)

c: \(HC=\sqrt{AC^2-AH^2}=\dfrac{144}{13}\left(cm\right)\)

\(BH=\dfrac{AH^2}{HC}=\dfrac{25}{13}cm\)

BC=BH+CH=13(cm)

AB=căn 13^2-12^2=5cm

11 tháng 7 2023

a

Áo dụng đl pytago vào tam giác ABC vuông tại A:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC vuông tại A có đường cao AH:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

\(CH=BC-BH=5-1,8=3,2\left(cm\right)\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b

Áp dụng đl pytago vào tam giác AHC vuông tại H có:

\(AC=\sqrt{AH^2+HC^2}=\sqrt{60^2+144^2}=156\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC vuông tại A, đường cao AH có:

\(AC^2=HC.BC\Rightarrow BC=\dfrac{AC^2}{HC}=\dfrac{156^2}{144}=169\left(cm\right)\)

\(BH=BC-HC=169-144=25\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow AB=\sqrt{25.169}=65\left(cm\right)\)

c

Áp dụng đl pytago vào tam giác AHC vuông tại H:

\(HC=\sqrt{AC^2-AH^2}=\sqrt{12^2-\left(\dfrac{60}{13}\right)^2}=\dfrac{144}{13}\approx11,08\left(cm\right)\)

Theo hệ thức lượng vào tam giác ABC đường cao AH có:

\(AH^2=HB.HC\Rightarrow HB=\dfrac{AH^2}{HC}=\dfrac{\left(\dfrac{60}{13}\right)^2}{\dfrac{144}{13}}=\dfrac{25}{13}\approx1,92\left(cm\right)\)

\(BC=HB+HC=\dfrac{25}{13}+\dfrac{144}{13}=13\left(cm\right)\)

\(AB^2=HB.BC\Rightarrow AB=\sqrt{HB.HC}=\sqrt{\dfrac{144}{13}.\dfrac{25}{13}}=\dfrac{60}{13}\approx4,62\left(cm\right)\)

5 tháng 2 2022

Xét \(\Delta AHC\left(\widehat{AHC}=90^o\right)\) có:

\(AC^2=AH^2+HC^2\) (định lí pitago)

\(\Rightarrow AH^2=AC^2-HC^2\)

\(\Rightarrow AH=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AH^2}-\dfrac{1}{AC^2}\)

\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}\)

\(\Rightarrow AB=3,75\left(cm\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:

\(BC^2=AB^2+AC^2\) (định lí pitago)

\(\Rightarrow BC=\sqrt{3,75^2+5^2}=6,25\left(cm\right)\)

\(AH=\sqrt{AC^2-HC^2}=3\left(cm\right)\)

\(HB=\dfrac{AH^2}{HC}=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=4+2,25=6,25(cm)

\(AB=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

27 tháng 3 2021

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

20 tháng 9 2021

GIÚP mình thật đầy đủ nhất

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)

27 tháng 2 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: A B 2 + A C 2 = 5 2 + 12 2  = 25 + 144 = 169 = 13 2 = B C 2

Suy ra, tam giác ABC vuông tại A

Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9