K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

`Answer:`

\(\left(2x-1\right)^2-4\left(2-x\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1-4\left(2-x\right)\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1-8+4x\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(6x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\6x-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\6x=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{2}\end{cases}}}\)

20 tháng 3 2022

\(\left(2x-1\right)\left(2x-1-8+4x\right)=0\Leftrightarrow x=\dfrac{1}{2};x=\dfrac{3}{2}\)

13 tháng 3 2018

\(x^4-2x^3+3x^2-2x+1=0\)

Chia cả hai vé cho \(x^2\)

\(\Leftrightarrow x^2-2x+3-\dfrac{2}{x}+\dfrac{1}{x^2}\)

\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-2\left(x+\dfrac{1}{x}\right)+1=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt x+1/x = a, ta có:

\(a^2-2a+1=0\)

\(\Leftrightarrow\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow x+\dfrac{1}{x}=1\)

\(\Leftrightarrow x^2+1=x\)

\(\Leftrightarrow x^2-x+1=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+3>0\)

Do đó phương trình vô nghiệm

7 tháng 2 2020

Ôn tập Căn bậc hai. Căn bậc ba

NV
7 tháng 2 2020

Bài này lớp 9 chỉ có bình phương và bình phương mới hết nghiệm thôi em.

Giải 1 cách đẹp mắt và triệt để thì cần sử dụng kiến thức 11

28 tháng 7 2017

a) ĐK:  \(x\ge\frac{-1}{2}\)

\(x^2-\left(2x+1+2\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow x^2-\left(\sqrt{2x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+1}-1\right)\left(x+\sqrt{2x+1}+1\right)=0\)

Vì  \(x\ge\frac{-1}{2}\)  nên  \(x+\sqrt{2x+1}+1>0\)

\(\Rightarrow x-\sqrt{2x+1}-1=0\)

\(\Leftrightarrow x-1=\sqrt{2x+1}\)

\(\Rightarrow x^2-4x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Thử lại chỉ có x = 4 thỏa mãn

8 tháng 11 2016

Thực hiện các phép đổi tương đương , ta đưa ( 1 ) về dạng :

\(\frac{x+4}{2x^2-5x+2}-\frac{x+4}{2x^2-7x+3}=0\)

\(\Leftrightarrow\left(x+4\right)\left(\frac{1}{2x^2-5x+2}-\frac{1}{2x^2-7x+3}\right)=0\)

\(\Leftrightarrow\frac{\left(x+4\right)\left(1-2x\right)}{\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)}=0\)

\(\Leftrightarrow\left(x+4\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=\frac{1}{2}\end{array}\right.\)

Thữ vào mẫu thức : Với \(x=\frac{1}{2}\) thì \(2x^2-5x+2=0\)

Với \(x=-4\) thì \(\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)\ne0\)

Vậy phương trình ( 1 ) là cho nghiệm duy nhất là \(x=-4\)

 

9 tháng 2 2017

a) \(x^4+2x^3-2x^2+2x-3=0\)

  \(\Leftrightarrow x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)

 \(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+x+3\right)=0\)

 \(\Rightarrow\orbr{\begin{cases}x-1=0\\x^3+3x^2+x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x^2+1\right)=0\left(1\right)\end{cases}}\)

Giải (1) : \(\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\end{cases}}\)

Mà \(x^2\)>0

\(\Rightarrow\)pt vô nghiệm

Vậy \(x\in\left(-3;1\right)\)


 

\(\)

9 tháng 11 2017

\(x^4-x^2+2x+2=y^2\)

Ta có: 

\(\left(x^2-1\right)^2\le x^4-x^2+2x+2< \left(x^2+2\right)^2\)

\(\Rightarrow x^4-x^2+2x+2=\left(\left(x^2-1\right)^2;x^4;\left(x^2-1\right)^2\right)\)

Tới đây tự làm nốt nhé