Giup minh giai bai nay voi : minh khong nhan duoc tieng viet mong moi nguoi thong cam cho minh
cau a) \(\left(x+\frac{7}{4}\right)x\frac{3}{2}=6\)
cau b) \(x:\frac{3}{5}+\frac{2}{5}=\frac{9}{5}\)
cau c) \(\frac{1}{2}:3+x=\frac{5}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM - GM ta có :
\(\left(1+\frac{a}{b}\right)^5+\left(1+\frac{b}{a}\right)^5\ge2^5\left(\sqrt{\frac{a}{b}}\right)^5+2^5\left(\sqrt{\frac{b}{a}}\right)^5=32\left[\left(\sqrt{\frac{a}{b}}\right)^5+\left(\sqrt{\frac{b}{a}}\right)^5\right]\)
\(\ge32.2\sqrt{\left(\sqrt{\frac{a}{b}}\right)^5\left(\sqrt{\frac{b}{a}}\right)^5}=32.2=64\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
a) \(x^3-\frac{4}{25}x=0\)
\(\Leftrightarrow x\left(x+\frac{2}{5}\right)\left(x-\frac{2}{5}\right)=0\)
<=> x = 0
Xét 2 trường hợp:
\(\Leftrightarrow x+\frac{2}{5}=0\)
\(x=0-\frac{2}{5}\)
\(x=-\frac{2}{5}\)
\(\Leftrightarrow x-\frac{2}{5}=0\)
\(x=0+\frac{2}{5}\)
\(x=\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{2}{5}\end{cases}}\)
b) \(\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{4}{3}\)
\(=\frac{13}{40}:\frac{4}{3}\)
\(=\frac{39}{120}=\frac{13}{40}\)
c) \(4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^2+3\left(\frac{-1}{2}\right)-1\left(\frac{-1}{2}\right)^0\)
\(=4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^3+3\left(\frac{-1}{2}\right)-1.1\)
\(=-\frac{1}{2}-\frac{1}{2}-\frac{3}{2}-1.1\)
\(=-\frac{5}{2}-1\)
\(=-\frac{7}{2}\)
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow c=\frac{2ab}{a+b}\)
\(\frac{a-c}{c-b}=\frac{a-\frac{2ab}{a+b}}{\frac{2ab}{a+b}-b}=\frac{\frac{a^2+ab-2ab}{a+b}}{\frac{2ab-ab-b^2}{a+b}}=\frac{a^2+ab-2ab}{2ab-ab-b^2}=\frac{a.\left(a-b\right)}{b.\left(a-b\right)}=\frac{a}{b}\)(ĐPCM)
\(\left|2x-27\right|^{2017}+\left(3y+10\right)^{2012}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)(làm tắt nha, có gì bn thêm vào)
câu 2 : | 2x - 27 |\(^{2011}\)+ ( 3y + 10 ) \(^{2012}\)=0
=> \(\left|2x-27\right|^{2011}\)lớn hơn hoặc = 0 (1)
=> \(\left(3y+10\right)^{2012}\)>hoặc = 0(2)
mà (1) + (2) =0
nên => \(\left|2x-27\right|^{2011}=0\)và \(\left(3y+10\right)^{2012}=0\)
\(\left|2x-27\right|^{2011}=0^{2011}\) \(\left(3y+10\right)^{2012}=0^{2012}\)
\(\left|2x-27\right|=0\) 3y + 10 = 0
2x = 27 3y = -10
x = 27 : 2 y = -10 : 3
x = 13,5 y = \(\frac{-10}{3}\)
a) -1/8 -2x/5-1/3=3
-2x/5=3+1/8+1/3
-2x/5=83/24
-2x=(83×5)/24=415/24
x = (415÷-2)/24= -415/48
b) -7/3 -(25/6 -4/3+ 3/2)
= -7/3 -13/3 = -20/3
\(\left[\frac{-2}{5}x^3.\left(2x-1\right)^m+\frac{2}{5}x^{m+3}\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left[\frac{2}{5}x^3\left(2x+1\right)^m+\frac{2}{5}x^3.\left(\frac{2}{5}\right)^m\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[\left(2x+1\right)^m+\left(\frac{2}{5}\right)^m\right]\right\}:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[2x+\frac{7}{5}\right]^m\right\}:\frac{-2}{5}x^3\)
\(=-\left(2x+\frac{7}{5}\right)^m\)
đến đây thì mình chịu
a) \(\left(x+\frac{7}{4}\right)\times\frac{3}{2}=6\)
\(\Leftrightarrow\left(x+\frac{7}{4}\right)=6\div\frac{3}{2}\)
\(\Leftrightarrow x+\frac{7}{4}=4\)
\(\Leftrightarrow x=4-\frac{7}{4}\)
\(\Leftrightarrow x=\frac{9}{4}\)
b) \(x\div\frac{3}{5}+\frac{2}{5}=\frac{9}{5}\)
\(\Leftrightarrow x\div\frac{3}{5}=\frac{9}{5}-\frac{2}{5}\)
\(\Leftrightarrow x\div\frac{3}{5}=\frac{7}{5}\)
\(\Leftrightarrow x=\frac{7}{5}\times\frac{3}{5}\)
\(\Leftrightarrow x=\frac{21}{25}\)
c) \(\frac{1}{2}\div3+x=\frac{5}{3}\)
\(\Leftrightarrow\frac{1}{6}+x=\frac{5}{3}\)
\(\Leftrightarrow x=\frac{5}{3}-\frac{1}{6}\)
\(\Leftrightarrow x=\frac{3}{2}\)
học đi