tim min x^2 + y ^2 - x +6y + 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^2+y^2-x+6y+10\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0;\)\(\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\)
Dấu"=" xảy ra khi \(\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2};\left(y-3\right)^2=0\Leftrightarrow y=3\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2};y=3\)
\(D=x^2+2x\left(y+2\right)+2y^2+6y+10\)
\(=x^2+2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2+2y+1\right)+5\)
\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+\left(y+1\right)^2+5\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+5\ge5\forall x\)
\(\Rightarrow\)Min D = 5 tại \(\hept{\begin{cases}x+y+2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)
=.= hk tốt!!
\(E=x^2+4xy+5y^2=x^2+4xy+4y^2+y^2=\left(x+2y\right)^2+y^2\ge0\forall x,y\)
=> Min E = 0 tại \(\hept{\begin{cases}x+2y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
M=x2+y2-x+6y+10
=(x-1/2)2+(y+3)3+3/4
Ta thấy:(x-1/2)2>=0
(y+3)3>=0
=>(x-1/2)2+(y+3)>=0
=>(x-1/2)2+(y+3)+3/4>=0+3/4=3/4
Dấu "="<=>x=1/2 hoặc y=-3
Vậy...
x+y-x+6y+10= x2-x+\(\frac{1}{4}\)+y2+6y+9+\(\frac{3}{4}\)=(x-\(\frac{1}{2}\))2+(y+3)2+\(\frac{3}{4}\) ≥\(\frac{3}{4}\)
Daauus bằng xảy ra khi và chỉ khi x=\(\frac{1}{2}\) và y= -3
Suy ra Min= \(\frac{3}{4}\)
xét x2 + y2 - x + 6y + 10
= ( x2 - 2 . x .1/2 + 1/4) + ( y2 + 2 .y .3 + 9) + 3/4
= (x + 1/2)2 + (y + 3)2 + 3/4
Vì (x + 1/2) 2 > 0 vói mọi x
( y + 3)2 > vưới mọi x
3/4 > 0
=> (x + 1/2)2 + (y+3)2 + 3/4
=> M có GTNN là 3/4 <=> (x+1/2)2 = 0 -> x + 1/2=0 -> x = -1/2
và (y + 3)2 = 0 -> y +3 = 0 -> y =-3
Vậy M có GTNN là 3/4 khi x = -1/2 và y =-3
đấy là 1 cahs tách cậu có thể tìm và tham khảo các cách khác : '> đừng thụ động quá nhé