Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =-4(x^2-4x+5)
=-4(x^2-4x+4+1)
=-4(x-2)^2-4<=-4
Dấu = xảy ra khi x=2
b: =-x^2+4x-4-y^2-6y-9+25
=-(x-2)^2-(y+3)^2+25<=25
Dấu = xảy ra khi x=2 và y=-3
1)
a) \(2x^2-12x+18+2xy-6y\)
\(=2x^2-6x-6x+18+2xy-6y\)
\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)
\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)
\(=\left(x-3\right)\left(2y+2x-6\right)\)
\(=2\left(x-3\right)\left(y+x-3\right)\)
b) \(x^2+4x-4y^2+8y\)
\(=x^2+4x-4y^2+8y+2xy-2xy\)
\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)
\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)
\(=\left(2y+x\right)\left(-2y+x+4\right)\)
2) \(5x^3-3x^2+10x-6=0\)
\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)
Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)
\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)
\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Bài làm
a) 2x2 - 12x + 18 + 2xy - 6y
= 2x2 - 6x - 6x + 18 + 2xy - 6y
= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )
= 2x( y + x - 3 ) - 6( y + x - 3 )
= ( 2x - 6 ) ( y + x - 3 )
# Học tốt #
A = \(x^2\) - 6x - 1
= (\(x^2\) - 2.x.3 + \(3^2\)) - \(3^2\) - 1
= \(\left(x+3\right)^2\) - 27 - 1
= \(\left(x+3\right)^2\) - 28
Ta có: \(\left(x+3\right)^2\) ≥ 0 ∀ x
⇒ \(\left(x+3\right)^2-28\) ≥ - 28
Hay A ≥ - 28
Dấu "=" xảy ra ↔ x + 3 = 0
x = - 3
Vậy min A = - 28 ↔ x = - 3
B = \(x^2\) + 3x + 7
= (\(x^2\) - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\)) \(-\frac{3}{2}^2\) + 7
= \(\left(x+\frac{3}{2}\right)^2\) \(-\frac{9}{4}\) + 7
= \(\left(x+\frac{3}{2}\right)^2\) + \(\frac{19}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\) ≥ 0 ∀ x
⇒ \(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\) ≥ \(\frac{19}{4}\)
Hay B ≥ \(\frac{19}{4}\)
Dấu "=" xảy ra ↔ \(x+\frac{3}{2}=0\)
\(x=-\frac{3}{2}\)
Vậy min B = \(\frac{19}{4}\) ↔ \(x=-\frac{3}{2}\)
\(\Leftrightarrow C=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+5\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+5\ge5\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
\(\Leftrightarrow D=\left(x^4-4x+3\right)+2017\)
\(\Leftrightarrow\)\(D=\left(x^4-2x^3+x^2\right)+\left(2x^3-4x^2+2x\right)+\left(3x^2-6x+3\right)+2017\)
\(\Leftrightarrow D=x^2\left(x^2-2x+1\right)+2x\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)+2017\)
\(\Leftrightarrow D=\left(x^2+2x+3\right)\left(x-1\right)^2+2017\ge2017\)
Dấu "=" xảy ra ⇔ x = 1
\(x^2-4x+y^2-6x+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6x+9\right)-4-9+15-2=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Lại có :
\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x=2;y=3\)
\(x^2+y^2-x+6y+15\)
\(=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{25}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{25}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{25}{4}\ge\frac{25}{4}\)
Vậy GTNN của biểu thức trên là \(\frac{25}{4}\)
de z cg hoi..~
A = (x2 -x + 1/4) + (y2 + 6y +9) + 23/4 =(x - 1/2)2 + (y+3)2 + 23/4 >= 23/4 (vì (x - 1/2)2 >= 0 và (y+3)2 >=0)
Vậy giá trị nhỏ nhất của biểu thức là 23/4
Dấu "=" xảy ra khi x = 1/2 và y = -3