Cho \(x^2+y^2+z^2=3\left(x,y,z\in Z\right)\). Tìm \(max\)và \(min\)của \(A=x+y+z+27\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn bài của chú là chứng cả mắt, và chú cũng vậy? Thế giới của chú thật nghèo nàn.
Ta có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow\) \(2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)
\(\Leftrightarrow\) \(x^2+y^2+z^2\ge xy+yz+xz\) (với mọi \(x,y,z\in R\) )
Do đó, \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\le x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)\)
Hay nói cách khác, \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow\) \(-3\le x+y+z\le3\)
Khi đó, \(A\le3+27=30\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z\\x^2+y^2+z^2=3\end{cases}\Leftrightarrow}\) \(x=y=z=1\)
Vậy, \(A_{max}=30\) khi \(x=y=z=1\)
Dự đoán \(MinA=2\)khi \(x=y=z=\frac{1}{2}\)và \(MaxA=3\)khi x = y = z = 1. Ta sẽ chứng minh \(2\le\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\le3\)
Đặt \(a=x+1;b=y+1;c=z+1\), khi đó ta được\(a,b,c\in\left[\frac{3}{2};2\right]\)
Bất đẳng thức cần chứng minh được viết lại là \(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)
#Trước hết ta chứng minh\(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\)\(\Leftrightarrow5\le\frac{a+b-2}{c}+1+\frac{b+c-2}{a}+1+\frac{c+a-2}{b}+1\)\(\Leftrightarrow5\le\left(a+b+c-2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo một đánh giá quen thuộc thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)nên ta quy bất đẳng thức cần chứng minh về dạng \(\left(a+b+c-2\right)\frac{9}{a+b+c}\ge5\)
Đặt \(a+b+c=s\)thì ta cần chứng minh \(\frac{9\left(s-2\right)}{s}\ge5\Leftrightarrow s\ge\frac{9}{2}\)*đúng vì \(a+b+c\ge\frac{3}{2}.3=\frac{9}{2}\)*
Vậy bất đẳng thức bên trái được chứng minh
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)
#Chứng minh \(\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)
Không mất tính tổng quát, ta giả sử \(\frac{3}{2}\le a\le b\le c\le2\). Khi đó ta sẽ có\(\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{2}+\frac{2}{a}\right)=\frac{\left(2-b\right)\left(a^2-2b\right)}{2ab}\le0\)hay \(\frac{a}{b}+\frac{b}{a}\le\frac{a}{2}+\frac{2}{a}\)
Hoàn toàn tương tự ta được \(\frac{b}{c}+\frac{c}{b}\le\frac{b}{2}+\frac{2}{b}\); \(\frac{a}{c}+\frac{c}{a}\le\frac{a}{2}+\frac{2}{a}\)
Cộng theo vế các bất đẳng thức trên ta được\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\)
Ta cần chứng minh\(a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\le3+\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\Leftrightarrow a+\frac{2}{a}+\frac{b}{2}\le3+\frac{2}{c}\)
Bất đẳng thức cuối cùng là một bất đẳng thức đúng vì\(\hept{\begin{cases}a+\frac{2}{a}-3=\frac{\left(a-1\right)\left(a-2\right)}{a}\le0\Leftrightarrow a+\frac{2}{a}\le3\\\frac{b}{2}\le1\le\frac{2}{c}\end{cases}}\)
Vậy bất đẳng thức bên phải được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Áp dugnj bđt bunhia ta được \(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=9\)(vì x+y+z=3)
\(\Rightarrow M\ge\frac{9}{3}=3\)
Dấu = xảy ra khi x=y=z và x+y+z=3 =>x=y=z=1
b,
\(P=\frac{x}{\left(x+10\right)^2}\le\frac{x}{40x}=\frac{1}{40}\)
dấu = xảy ra khi x=10
Gọi cái biểu thức đó là P nha
Trước tiên chứng minh:
\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\left(\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right)=0\)
\(\Leftrightarrow\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\Leftrightarrow x-y+y-z+z-x=0\)( đúng )
Giờ ta quay lại bài toán ban đầu
Ta có:
\(\Leftrightarrow2P=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{x^2+y^2}{2\left(x+y\right)}+\frac{y^2+z^2}{2\left(y+z\right)}+\frac{z^2+x^2}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow P\ge\frac{1}{4}\)
Ta có nhận xét sau:
\(\dfrac{x+2}{x^3\left(y+z\right)}=\dfrac{1}{x^2\left(y+z\right)}+\dfrac{2}{x^3\left(y+z\right)}=\dfrac{yz}{zx+xy}+\dfrac{2\left(yz\right)^2}{zx+xy}\)
Tương tự với các phân thức còn lại
Ta đặt:
\(\left\{{}\begin{matrix}a=xy\\b=yz\\c=zx\end{matrix}\right.\)
\(\Rightarrow abc=1\) và \(a,b,c>0\)
Biểu thức P trở thành:
\(P=\Sigma_{cyc}\dfrac{a}{b+c}+2\Sigma_{cyc}\dfrac{a^2}{b+c}\)
Dễ thấy:
\(\Sigma_{cyc}\dfrac{a}{b+c}\ge\dfrac{3}{2}\) (Nesbit)
\(\Sigma_{cyc}\dfrac{a^2}{b+c}\ge\dfrac{a+b+c}{2}\ge\dfrac{3\sqrt[3]{abc}}{2}=\dfrac{3}{2}\)
Do đó:
\(P\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)