K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{DCB}=90^0\)

Xét tứ giác DCBO có 

\(\widehat{DCB}\) và \(\widehat{DOB}\) là hai góc đối

\(\widehat{DCB}+\widehat{DOB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DCBO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
15 tháng 10 2021

a, \(\widehat{CAI}=\widehat{CMI}=90^0\) nên ACMI nt

\(\widehat{AMB}=\widehat{EIF}=90^0\) (góc nt chắn nửa đg tròn) nên MEIF nt

b, Vì ACMI nt nên \(\widehat{MAB}=\widehat{MCI}\)

Vì MEIF nt nên \(\widehat{MEF}=\widehat{MIF}\)

Mà \(\widehat{MCI}=\widehat{MIF}\) (cùng phụ \(\widehat{MIC}\)) nên \(\widehat{MAB}=\widehat{MEF}\)

Mà 2 góc này ở vị trí ĐV nên EF//AB

c, Ta có \(\widehat{MCI}=\widehat{MIF}\)

\(\Rightarrow\widehat{MCI}+\widehat{MDI}=\widehat{MIF}+\widehat{MDI}\)

Mà tg CID vuông tại I nên \(\widehat{MCI}+\widehat{MDI}=\widehat{MIF}+\widehat{MDI}=90^0\)

Do đó tg MID vuông tại M

\(\Rightarrow\widehat{DMI}+\widehat{CMI}=90^0+90^0=180^0\)

Suy ra đpcm

Chờ t câu d

15 tháng 10 2021

d, Gọi J,K ll là tâm đg tròn ngoại tiếp tg CME và tg MFD

Gọi G là trung điểm MF

\(\Rightarrow\widehat{GKM}=\widehat{MDF}\left(=\dfrac{1}{2}sđ\stackrel\frown{MF}\right)\)

Mà \(\widehat{GKM}+\widehat{KMG}=90^0\) nên \(\widehat{MDF}+\widehat{KMG}=90^0\left(1\right)\)

Vì MIBD nt nên \(\widehat{MBI}=\widehat{MDF}\)

Mà \(\widehat{OMB}=\widehat{OBM}\) nên \(\widehat{OMB}=\widehat{MDF}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{OMB}+\widehat{GKM}=90^0\)

\(\Rightarrow KM\perp OM\) hay OM là tt của đg tròn ngoại tiếp tg MFD

Cmtt \(\Rightarrow JM\perp OM\) hay OM là tt đg tròn ngoại tiếp tg CME

Từ đó suy ra đpcm

16 tháng 2 2021

O A B x C E D M

a, xét tg AEO và CEO có : EO chung

^AEO = ^CEO = 90

OA = OC = r

=> Tg AEO = tg CEO (ch-cgv)

=> ^AOE = ^COE 

xét tg MAO và tg MCO  có : Mo chung

OA = OC = r

=> tg MAO = tg MCO (cg-c)

=> ^MAO = ^MCO 

mà ^MAO = 90

=> ^MCO = 90 => OC _|_ MC

có C thuộc 1/2(o)

=> MC là tt của 1/2(o)

b, xét tứ giác MCOA có : ^MCO = ^MAO = 90

=> ^MCO + ^MAO = 180

=>MCOA nội tiếp

+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM

có MEA = 90 do AC _|_ MO (Gt)

=> ^ADM = ^MEA = 90

=> MDEA nt