Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\dfrac{2}{3}x-\dfrac{4}{9}\right)\left(\dfrac{1}{2}-\dfrac{3}{7}x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=\dfrac{4}{9}\\\dfrac{3}{7}x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{7}{6}\end{matrix}\right.\)
\(x-\frac{1}{4}=\frac{3}{5}\)
\(x=\frac{3}{5}+\frac{1}{4}\)
\(x=\frac{12}{20}+\frac{5}{20}\)
\(x=\frac{17}{20}\)
\(x:\frac{2}{3}=\frac{1}{2}\)
\(x=\frac{1}{2}.\frac{2}{3}\)
\(x=\frac{1}{3}\)
Hok tốt
\(x-\frac{1}{4}=\frac{3}{5}\)
\(x\) \(=\frac{3}{5}+\frac{1}{4}\)
\(x\) \(=\frac{12}{20}+\frac{5}{20}\)
\(x\) \(=\frac{17}{20}\)
\(x:\frac{2}{3}=\frac{1}{2}\)
\(x\) \(=\frac{1}{2}x\frac{2}{3}\)
\(x\) \(=\frac{2}{6}\)rút gọn \(\frac{1}{3}\)
\(-\frac{1}{7}+\frac{5}{3}+\frac{5}{4}+\frac{1}{3}-\frac{3}{2}\)
\(=\left(-\frac{1}{7}+\frac{5}{3}-\frac{3}{2}\right)+\left(\frac{5}{3}+\frac{1}{3}\right)\)
\(=\frac{-6}{42}+\frac{70}{42}-\frac{63}{42}+\frac{6}{3}\)
\(=\frac{-6+70-63}{42}+2\)
\(=\frac{1}{42}+\frac{84}{42}\)
\(=\frac{85}{42}\)
\(\frac{2}{5}-\frac{1}{2}\left(x+\frac{1}{3}\right)=\frac{7}{5}\)
\(\frac{1}{2}\left(x+\frac{1}{3}\right)=\frac{2}{5}-\frac{7}{5}\)
\(\frac{1}{2}\left(x+\frac{1}{3}\right)=-1\)
\(x+\frac{1}{3}=-1:\frac{1}{2}\)
\(x+\frac{1}{3}=-2\)
\(x=-2-\frac{1}{3}\)
\(x=-\frac{7}{3}\)
\(\frac{2}{5}-\frac{1}{2}.\left(x+\frac{1}{3}\right)=\frac{7}{5}\)
\(\Rightarrow\frac{1}{2}.\left(x+\frac{1}{3}\right)=\frac{2}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{1}{2}.\left(x+\frac{1}{3}\right)=-1\)
\(\Rightarrow x+\frac{1}{3}=-2\)
\(\Rightarrow x=-\frac{7}{3}\)
\(2^{-1}+\left(5^2\right)^3\cdot5^{-6}+4^{-3}\cdot32-2\left(-3\right)^2\cdot\dfrac{1}{9}\)
\(=\dfrac{1}{2}+5^6.5^{-6}+4^{-3}.4^2.2--6^2.\dfrac{1}{9}\)
\(=\dfrac{1}{2}+1+\dfrac{1}{4}.2+\dfrac{3^2.2^2}{3^2}\)
\(=\dfrac{1}{2}+1+\dfrac{1}{2}+2^2\)
\(=\dfrac{1}{2}.2+1+4\)
\(=1+5=6\)
\(2^3+\left(\dfrac{1}{5}\right)^4+5^4=8+\dfrac{1}{625}+625=\dfrac{5000+1+625^2}{625}=\dfrac{395626}{625}\)
\(Sửa:2^3+\left(\dfrac{1}{5}\right)^4\cdot5^4=8+\left(\dfrac{1}{5}\cdot5\right)^4=8+1=9\)
a )
75/100 + 18/21 + 19/32 + 1/4 + 3/21 + 13/32
= 3/4 + 18/21 + 19/321 + 1/4 + 3/21 + 13/32
= ( 3/4 + 1/4 ) + ( 18/21 + 3/21 ) + ( 19/32 + 13/32 )
= 1 + 1 + 1
= 3
b )
4 và 2/5 + 5 và 6/9 + 2 và 3/4 + 1/4 + 1/3 + 3/5
= 22/5 + 51/9 + 11/4 + 1/4 + 1/3 + 3/5
= ( 22/5 + 3/5 ) + ( 51/9 + 1/3 ) + ( 11/4 + 1/4 )
= 25/5 + 54/9 + 12/4
= 5 + 6 + 3
= 14
a)\(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}=\frac{3}{4}+\frac{18}{21}+\frac{1}{4}+\frac{19}{32}+\frac{3}{21}+\frac{13}{32}\)
\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)
\(=1+1+1=3\)
a: =>4x^2-4x+1+7>4x^2+3x+1
=>-4x+8>3x+1
=>-7x>-7
=>x<1
b: \(\Leftrightarrow12x+1>=36x+12-24x-3\)
=>1>=9(loại)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{31}-\dfrac{1}{32}=1-\dfrac{1}{32}=\dfrac{31}{32}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{31\times32}\)
\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{32-31}{31\times32}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{31}-\frac{1}{32}\)
\(=1-\frac{1}{32}=\frac{31}{32}\)