Xét số nguyên n lớn hơn 2008 sao cho hai số \(2n-4015\)và \(3n-6023\)đều là số chính phương. Hãy tìm số dư khi chia n cho 40.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Do 2n + 1 là số chính phương lẻ nên 2n + 1 chia cho 4 dư 1. Suy ra n chẵn.
Do đó 3n + 1 là số chính phương lẻ. Suy ra 3n + 1 chia cho 8 dư 1 nên n chia hết cho 8.
Ta có số chính phương khi chia cho 5 dư 0; 1 hoặc 4.
Do đó \(2n+1;3n+1\equiv0;1;4\left(mod5\right)\).
Mặt khác \(2n+1+3n+1=5n+2\equiv2\left(mod5\right)\).
Do đó ta phải có \(2n+1;3n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\).
Từ đó n chia hết cho 40.
Với n = 40 ta thấy thỏa mãn
Với n = 80 ta tháy không thỏa mãn.
Vậy n = 40.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath