K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Bài 1 :

 Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3. 
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư. 
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3. 
d = q - p cũng chia hết cho 2 do p, q đều lẻ 
Vậy d chia hết cho 2*3 = 6

21 tháng 1 2021

Các số nguyên tố > 3 có dạng: 3k+1 hoặc 3k+2 ( \(k\inℕ\))

Có 3 số mà chỉ có 2 dạng nên tồn tại 2 số thuộc cùng 1 dạng, hiệu của chúng là d hoặc 2d chia hết cho 3,

do đó d chia hết cho 3. (1)

Mặt khác : d chia hết cho 2  (vì d là hiệu của 2 số lẻ) (2)

Từ (1) & (2) => d chia hết cho 6 (đpcm)

10 tháng 9 2023

 Vì p là số nguyên tố > 3 => p lẻ 

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1 

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d =  3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

21 tháng 1 2017

Bn tham khảo ở olm.vn/hoi-dap/question/143350.html

27 tháng 1 2023

ai hunt sea ko

2 tháng 5 2024

Lời giải của tớ dài lắm 

Tớ lười gõ bàn phím

2 tháng 5 2024

p là số nguyên tố > 3 => p lẻ

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

17 tháng 12 2015

p là số nguyên tố > 3 => p lẻ

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6