K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔABD và ΔCBE có

\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)

\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔABD~ΔCBE

16 tháng 12 2023

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

16 tháng 12 2023

cảm ơn ạ

31 tháng 12 2023

 

e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ  ( 1 ) và ( 2 ) => B, D , M thằng hàng

 

 

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Xét \(\Delta ABD\) và \(\Delta EBD\) ta có:

\(BA = BE\) (gt)

\(\widehat {{\rm{ABD}}} = \widehat {{\rm{ EBD}}}\) (do \(BD\) là phân giác)

\(BD\) chung

Suy ra \(\Delta ABD = \Delta EBD\) (c-g-c)

b) Vì \(\Delta ABD = \Delta EBD\) (cmt)

Suy ra \(\widehat {{\rm{BAD}}} = \widehat {{\rm{BED}}} = 90^\circ \) (hai góc tương ứng)

Suy ra \(DE \bot BC\)

Mà \(AH \bot BC\) (gt)

Suy ra \(AH\) // \(DE\)

Suy ra \(ADEH\) là hình thang

Mà \(\widehat {{\rm{DEB}}} = 90\) (cmt)

Suy ra \(ADEH\) là hình thang vuông

c) 

Gọi \(K\) là giao điểm của \(AE\) và \(AD\)

Suy ra \(BK\) là phân giác của \(\widehat {{\rm{ABC}}}\)

Mà \(\Delta ABE\) cân tại \(B\) (do \(BA = BE\) )

Suy ra \(BK\) cũng là đường cao

Xét \(\Delta ABE\) có hai đường cao \(BK\) và \(AH\) cắt nhau tại \(I\)

Suy ra \(I\) là trực tâm của \(\Delta ABE\)

Suy ra \(EF \bot AB\)

Mà \(AC \bot AB\) (do \(\Delta ABC\) vuông tại \(A\))

Suy ra \(AC\) // \(EF\)

Suy ra \(ACEF\) là hình thang

Mà \(\widehat {{\rm{CAE}}} = 90^\circ \)(gt)

Suy ra \(ACEF\) là hình thang vuông

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{B}$ chung

$\widehat{BAC}=\widehat{BHA}=90^0$

$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)

Ta có:
$AB.AC=AH.BC$ (cùng bằng 2 lần diện tích tam giác $ABC$)

b. 

Xét tam giác $BHA$ và $AHC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=\widehat{HAC}$ (cùng phụ góc $\widehat{BAH}$)

$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)

$\Rightarrow \frac{BH}{HA}=\frac{AH}{HC}$

$\Rightarrow AH^2=BH.CH$.

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Hình vẽ:

1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)

 

Bài 1 : Cho tam giác ABC vuông tại A ( AB<AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy E sao cho BE = BA.a) Tính độ dài BC, biết AB= 6cm, AC= 8cmb) chứng minh tam giác ABD=tam giác EBDc) kẻ đường cao AH của tam giác ABC. Chứng minh tứ giác ADEH là hình thang vuông.Bài 2: Cho tam giác ABC vuông tại A, AB= 9cm, AC=12cm, đường trung tuyến AM. Qua M vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại Fa) C/m tứ giác AEMF là hình...
Đọc tiếp

Bài 1 : Cho tam giác ABC vuông tại A ( AB<AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy E sao cho BE = BA.
a) Tính độ dài BC, biết AB= 6cm, AC= 8cm
b) chứng minh tam giác ABD=tam giác EBD
c) kẻ đường cao AH của tam giác ABC. Chứng minh tứ giác ADEH là hình thang vuông.
Bài 2: Cho tam giác ABC vuông tại A, AB= 9cm, AC=12cm, đường trung tuyến AM. Qua M vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại F
a) C/m tứ giác AEMF là hình chữ nhật 
b) tinh độ dài BC, AM
c) trên tia đối của tia MA lấy điểm H sao cho MA= MH. C/m ABHC là hình chữ nhật
d) gọi điểm D là điểm đối xứng của M qua F. C/m ADCM là hình vuông
e) tìm thêm điều kiện của tam giác ABC để tứ giác ADCM là hình vuông.
Bài 3: Cho tam giác ABC cân tại A. gọi M là trung điểm của BC, N là điểm đối xứng với A qua M
a) C/m tứ giác ABNC là hình thoi 
b) Qua điểm A, vẽ đường thẳng song song với BC, cắt NC tại D. C/m AD=BC
c) kẻ đường cao AH của tam giác ADN, tính độ dài AH, biết AD= 9cm, AN=12cm
Bài 4 cho tam giác ABC cân tại A có AM là đường phân giác ( M thuộc BC). Từ M lần lượt kẻ các đường thẳng song song với AB và AC, Các đường thẳng này cắt AC tại N, Cắt AB tại E.
a) tứ giác AEMN là hình gì ? vì sao ?
b) gọi D là điểm đối xứng của M qua N. C/m tứ giác ADMB là hình bình hành 

c) c/m tứ giác ADCM là hình chữ nhật 
d) tam giác ABC có thêm điều kiện gì để tứ giác ADCM là hình vuông? 

1
18 tháng 12 2023

Bài 3:

a: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

=>ABNC là hình bình hành

Hình bình hành ABNC có AB=AC

nên ABNC là hình thoi

b: Ta có:ABNC là hình thoi

=>AB//NC

mà D\(\in\)NC

nên AB//CD

Xét tứ giác ABCD có

AB//CD

AD//BC

Do đó: ABCD là hình bình hành

=>AD=BC

c: Xét ΔADN vuông tại A có \(DN^2=AD^2+AN^2\)

=>\(DN^2=9^2+12^2=225\)

=>\(DN=\sqrt{225}=15\left(cm\right)\)

Xét ΔAND vuông tại A có AH là đường cao

nên \(AH\cdot ND=AN\cdot AD\)

=>\(AH\cdot15=9\cdot12=108\)

=>AH=108/15=7,2(cm)

Bài 4:

a: Xét tứ giác AEMN có

AE//MN

AN//ME

Do đó: AEMN là hình bình hành

Hình bình hành AEMN có AM là phân giác của góc EAN

nên AEMN là hình thoi

b: Ta có; ΔABC cân tại A

mà AM là đường phân giác

nên AM\(\perp\)BC và M là trung điểm của BC

Xét ΔABC có

M là trung điểm của BC

MN//AB

Do đó: N là trung điểm của AC

Xét ΔABC có

M,N lần lượt là trung điểm của BC,CA

=>MN là đường trung bình của ΔABC

=>MN//AB và MN=AB/2

Ta có: MN=AB/2

MN=MD/2
Do đó: AB=MD

Xét tứ giác ABMD có

DM//AB

DM=AB

Do đó: ABMD là hình bình hành

c: Xét tứ giác AMCD có

N là trung điểm chung của AC và MD

=>AMCD là hình bình hành

Hình bình hành AMCD có \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

d: Để ADCM là hình vuông thì AM=CM

=>AM=BC/2

Xét ΔABC có

AM là đường trung tuyến

\(AM=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)