K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔABD và ΔCBE có

\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)

\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔABD~ΔCBE

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du

9 tháng 5 2017

A) Xét   \(\Delta HBA\) và  \(\Delta ABC\) có :

\(\widehat{B}\) chung     ;     \(\widehat{BAC}=\widehat{BHA}=90\)  độ

\(\Leftrightarrow\Delta HBA\infty\Delta ABC\left(g.g\right)\)

B)  Xét \(\Delta ABE\) và \(\Delta ACB\) có : 

       \(\widehat{A}\)   chung

      \(\widehat{ABE}=\widehat{BCA}\)( Do BE là phân giác của góc B , mà   \(\widehat{B}=2\widehat{C}\))

\(\Leftrightarrow\Delta ABE\infty\Delta ACB\left(g.g\right)\)

Ta có tỉ lệ :  \(\frac{AB}{AC}=\frac{AE}{AB}\)\(\Leftrightarrow AB^2=AE\cdot AC\left(dpcm\right)\)

C)  ta có tỉ lệ :  \(\frac{HB}{AB}=\frac{AB}{BC}\)\(\Leftrightarrow HB=\frac{AB^2}{BC}=\frac{9}{6}=1,5\left(cm\right)\)

    Xét   \(\Delta BHD\) và  \(\Delta BAE\) có :

              \(\widehat{BHD}=\widehat{BAE}=90\)độ

              \(\widehat{ABE}=\widehat{EDH}\)( do BE là phân giác của góc B )

    \(\Leftrightarrow\Delta BHD\infty\Delta BAE\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{BH}{AB}=\frac{HD}{AE}=\frac{BD}{BE}\)

    \(\Rightarrow\frac{S_{BHD}}{S_{BAE}}=\left(\frac{BH}{AB}\right)^2=\left(\frac{1,5}{3}\right)^2=\frac{1}{4}\)

BÀI NÀY MK TỪNG LÀM RÙI NÊN YÊN TÂM !!! NẾU THẤY ĐÚNG THÌ TK NKA !!!

9 tháng 5 2017

Hàng thứ 5 từ dười đếm lên bạn sửa lại giúp mk là   \(\widehat{ABE}=\widehat{EBH}\)mới đúng !!! thông cảm mk bị cận 

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE