Bài 12: Cho tam giác ABC c n tại A và M là trung điểm của BC. ấy các điểm D,E
theo thứ t thuộc các cạnh AB, AC sao cho góc DME bằng góc B.
a) Chứng minh tam giác BDM đồng dạng với tam giác CME
b) Chứng minh tam giác BDM đồng dạng tam giác MDE
c) Chứng minh BM^2=BD.CE
a: Ta có: \(\widehat{DME}=\widehat{B}\)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: \(\widehat{DME}=\widehat{C}\)
Ta có: \(\widehat{EMC}+\widehat{C}+\widehat{MEC}=180^0\)
\(\widehat{EMC}+\widehat{DME}+\widehat{DMB}=180^0\)
mà \(\widehat{C}=\widehat{DME}\)
nên \(\widehat{MEC}=\widehat{DMB}\)
Xét ΔMEC và ΔDMB có
\(\widehat{MEC}=\widehat{DMB}\)
\(\widehat{C}=\widehat{B}\)
Do đó: ΔMEC~ΔDMB
c: Ta có: ΔBMD~ΔCEM
=>\(\dfrac{MB}{EC}=\dfrac{BD}{MC}\)
=>\(BD\cdot EC=MB\cdot MC=MB^2\)