Tìm số nguyên n sao cho 2n+3/7 có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số :\(\frac{2n+3}{7}\) có giá trị là số nguyên thì 2n+3:7
\(\implies\) \(2n+3=7k\)
\(\implies\) 2n=7k-3
\(\implies\) n=\(\frac{7k-3}{2}\)
Vậy với mọi số nguyên n có dang \(\frac{7k-3}{2}\) thì phân số \(\frac{2n+3}{7}\) có giá trị là số nguyên
a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
mà n là số nguyên
nên n thuộc {0;1;-1}
c: 2n+5/n-3 là số nguyên
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;14;-8}
\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)
Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)
Ta có bảng:
n-3 | -11 | -1 | 1 | 11 |
n | -8 | 2 | 4 | 14 |
Vậy \(n\in\left\{-8;2;4;14\right\}\)
\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)
Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)
\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)
Ta có:n+7/2n-1 là số nguyên
=>7/2n-1 là số nguyên
=>2n-1=Ư(7)={1;7}
2n-1=1 =>2n=2 =>n=1
2n-1=7 =>2n=8 =>n=4
n=2 nha thông cảm cho mình mình hơi lười nha k cho mình nha mình cảm ơn
Vì 7/2n-1 có giá trị là số nguyên
=> 7 chia hết cho 2n-1
=> 2n-1 thuộc ước của 7
Ư(7)={1;-1;7;-7}
Ta có bảng :
2n-1 1 -1 7 -7
2n 2 0 8 -6
n 1 0 4 -3
Vậy với n thuộc {-3;0;1;4} thì thỏa mãn đầu bài
\(-\frac{3}{2n-1}\) là số nguyên \(\Leftrightarrow\)-3\(⋮\)2n-1
\(\Rightarrow2n-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow2n\in\left\{0;2;-2;4\right\}\)
\(\Rightarrow n\in\left\{0;1;-1;2\right\}\)
Vậy \(n\in\left\{0;1;-1;2\right\}\)
Để\(\frac{-3}{2n-1}\)có giá trị nguyên => \(-3⋮2n-1\)
=> \(2n-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau :
2n-1 | 1 | -1 | 3 | -3 |
n | 1 | 0 | 2 | -1 |
Vậy ...
để 2n+3/7 là số nguyên thì :
(2n + 3) ⋮ 7
⇒ (2n + 3 - 7) ⋮ 7
⇒ (2n - 4) ⋮ 7
⇒ [2(n - 2)] ⋮ 7
Mà (2,7) = 1
⇒ (n - 2) ⋮ 7
⇒ n - 2 = 7k (k ∈ Z)
n = 7k + 2 (k ∈ Z)
Vậy với n = 7k + 2 (k ∈ Z) thì 2n+3 / 7 là số nguyên.
:) no ngan ghe ta