K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

Ta có: 

\(xy+yz+xz=0\)

Chia cả hai vế của đẳng thức trên cho  \(xyz\ne0\), ta được:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Nhận xét: Chú ý rằng nếu  \(x+y+z=0\)  \(\left(1\right)\) thì  \(x^3+y^3+z^3=3xyz\)  \(\left(\text{*}\right)\)

Thật vậy,  từ   \(\left(1\right)\)  \(\Rightarrow\)  \(z=-\left(x+y\right)\)

Do đó,  \(x^3+y^3+z^3=x^3+y^3-\left(x+y\right)^3=-3x^2y-3xy^2=-3xy\left(x+y\right)=3xyz\)

Vậy, đẳng thức   \(\left(\text{*}\right)\) được chứng minh.

Áp dụng nhận xét trên, ta có:

Nếu  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  thì  \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{3}{xyz}\)

Vậy,  \(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)  \(\left(x,y,z\ne0\right)\)

15 tháng 3 2017

bạn lên mạng đánh đề bài kiểu gì cũng có nhé -:)) tớ tìm rồi đấy >_<

12 tháng 9 2017

ta có xy+yz+zx=0=> \(\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\Rightarrow a+b+c=0\)

ta xét \(a^3+b^3+c^3-3abc=a^3+b^3+3ab\left(a+b\right)+c^3-3ab-3abc\)

           \(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=> \(a^3+b^3+c^3=3abc\) \(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

=> \(M=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)

=> M=3

12 tháng 12 2016

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

12 tháng 12 2016

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

2 tháng 9 2017

làm tương tự bài này nha

x + y + z = 3. Tìm Max P = xy + yz + xz

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy

hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 

tương tự: 

+) 2yz ≤ y² + z² +) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên

--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 

--> xy + yz + xz ≤ x² + y² + z² 

--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 

--> 3(xy + yz + xz) ≤ (x + y + z)² 

--> 3(xy + yz + xz) ≤ 3² 

--> xy + yz + xz ≤ 3 

2 tháng 9 2017

Theo đề ta có :

xy + yz + xz = 0 

\(\Rightarrow xy=0-yz-xz=-\left(yz+xz\right)\) (1)

\(\Rightarrow yz=0-xz-xy=-\left(xz+xy\right)\)(2)

\(\Rightarrow xz=0-xy-yz=-\left(xy+yz\right)\)(3)

\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

Từ (1) ; (2) và (3) , ta có :

\(M=\frac{-\left(xy+xz\right)}{x^2}+\frac{-\left(xy+yz\right)}{y^2}+\frac{-\left(yz+xz\right)}{z^2}\)

\(M=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(x+z\right)}{y^2}+\frac{-z\left(x+y\right)}{z^2}\)

\(M=\frac{-\left(y+z\right)}{x}+\frac{-\left(x+z\right)}{y}+\frac{-\left(x+y\right)}{z}\)

\(M-3=\left(\frac{-\left(y+z\right)}{x}-1\right)+\left(\frac{-\left(x+z\right)}{y}-1\right)+\left(\frac{-\left(x+y\right)}{z}-1\right)\)

\(M-3=\left(\frac{-y-z}{x}-\frac{x}{x}\right)+\left(\frac{-x-z}{y}-\frac{y}{y}\right)+\left(\frac{-x-y}{z}-\frac{z}{z}\right)\)

\(M-3=\left(\frac{-y-z-x}{x}\right)+\left(\frac{-x-z-y}{y}\right)+\left(\frac{-x-y-z}{z}\right)\)

\(M-3=\frac{-\left(y+z+x\right)}{x}+\frac{-\left(x+z+y\right)}{y}+\frac{-\left(x+y+z\right)}{z}\)

..............

12 tháng 4 2018

\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)

\(A=\frac{xz}{xyz+xz+z}+\frac{yxz}{yz.xz+xyz+xz}+\frac{z}{zx+z+1}\) Thay xyz=1 vào ta được:

\(A=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{zx+z+1}\)

\(A=\frac{zx+z+1}{zx+z+1}=1\)

=> A=1