So sánh A và B, biết :
A = (1+1/3) . (1+1/3^2) . (1+1/3^4) ... (1+1^64)
B= 2,5
Bạn nào làm đúng mình tick cho 4 tick !!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)
\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)
\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
=> A > B
Vậy A > B
Ta có:
a) A = 2018 x 2020 = (2019 - 1) x (2019 + 1)
Áp dụng hằng đẳng thức thứ ba ta có:
A = 208 x 2020 = \(2019^2-1^2=2019^2-1\)
Vì \(2019^2-1< 2019^2\)
\(\Rightarrow\)A < B
b) A = \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1^2\right)\left(2^2+1^2\right)\left(2^4+1^2\right)\left(2^8+1^2\right)\left(2^{16}+1^2\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Vì \(2^{32}-1< 2^{32}\)
\(\Rightarrow\)A < B
a) Áp dụng hàng đăng thức (a - b) (a + b) = a2 - b2
Ta có : A = 2018.2020 = (2019 - 1) (2019 + 1) = 20192 - 1
Mà B = 20192
Nên A < B
\(A=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{19.20}{2}}\)
=> \(A=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{19.20}\)
=> \(\frac{A}{2}=\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{20}\)
=> \(\frac{A}{2}=\frac{20-3}{20.3}\)
=> \(\frac{A}{2}=\frac{17}{60}\)
=> \(A=\frac{17}{30}\)
VẬY \(A=\frac{17}{30}\)
Ta có :\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+19}\)
\(=\frac{1}{3\times4}\times2+\frac{1}{4\times5}\times2+...+\frac{1}{19\times20}\times2\)
\(=2\times\left(\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{19\times20}\right)=2\times\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\times\left(\frac{1}{3}-\frac{1}{20}\right)=2\times\frac{17}{60}=\frac{17}{30}\)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
a , tổng các phân số đã cho là : 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 79/64
b, \(\frac{79}{64}\)và \(\frac{2017}{2018}\)= \(\frac{159422}{129152}\)và \(\frac{129088}{129152}\)= \(\frac{159422}{129152}\)> \(\frac{129088}{129152}\)
=> \(\frac{79}{64}\)> \(\frac{2017}{2018}\)
a) 1/2 + 1/4 + 1/8 + 1/ 16 + 1/32 + 1/64
=32/64 + 16/64 + 8/64 + 4/64 + 2/64
=32+16+8+4+2/64 = 66/64= 33/32
b) ta có 33/32 > 1 và 2017/2018<1
nên 33/32 > 2017/2018