GIÚP MIK VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
27. unforgetable
câu 31 đổi thành ...if I can give him his guide....
câu 32 thiếu on trong turned on và đổi thành has been turned on vì câu gốc là HTHT
câu 33 rút gọn mệnh đề ok
câu 34 hơi phân vân nhưng mình thấy đúng
Câu 3:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{90}{5}=18\)
Do đó: x=54; y=36
a) \(=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
b) \(=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
c) \(=3\left(x^2+4x+4\right)=3\left(x+2\right)^2\)
d) \(=2\left(a^2-b^2\right)-5\left(a-b\right)=2\left(a-b\right)\left(a+b\right)-5\left(a-b\right)\)
\(=\left(a-b\right)\left(2a+2b+5\right)\)
e) \(=xy\left(x-y\right)-3\left(x^2-y^2\right)=xy\left(x-y\right)-3\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(xy-3x-3y\right)\)
f) \(=x^2\left(x+5\right)-4\left(x+5\right)=\left(x+5\right)\left(x^2-4\right)\)
\(=\left(x+5\right)\left(x-2\right)\left(x+2\right)\)
\(3x\left(x-y\right)+x-y\)
\(=3x\left(x-y\right)+1\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+1\right)\)
1 didn't
2 did
3 doesn't
4 does
5 don't
6 do
7 did
8 doesn't
1. a little
2. much
3. many
4. a few
5. many
6. much
7. a little
8. a few
k mik nha bn
\(\sqrt{2x^3+3x^2+6x+16}-\sqrt{4-x}\ge2\sqrt{3}\) (ĐK: \(-2\le x\le4\)
\(\Leftrightarrow\sqrt{2x^3+3x^2+6x+16}\ge2\sqrt{3}+\sqrt{4-x}\)
\(\Leftrightarrow2x^3+3x^2+6x+16\ge12+4-x+4\sqrt{3\left(4-x\right)}\)
\(\Leftrightarrow2x^3+3x^2+7x\ge4\sqrt{3\left(4-x\right)}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x^3+3x^2+7x\right)^2\ge48\left(4-x\right)\\2x^3+3x^2+7x\ge0\end{cases}}\)
\(\Leftrightarrow\left(x-1\right)\left(4x^5+16x^4+53x^3+95x^2+144x+192\right)\ge0\)(\(x\ge0\))
\(\Leftrightarrow x-1\ge0\)(vì \(x\ge0\))
\(\Leftrightarrow x\ge1\)
Vậy bất phương trình có tập nghiệm là \(\left[1;4\right]\).
\(a^2+b^2=1^2+4^2=17\)
ĐKXĐ: \(-2\le x\le4\)
\(\sqrt{2x^3+3x^2+6x+16}\ge\sqrt{4-x}+2\sqrt{3}\)
\(\Leftrightarrow2x^3+3x^2+6x+16\ge16-x+4\sqrt{3\left(4-x\right)}\)
\(\Leftrightarrow2x^3+3x^2+7x\ge4\sqrt{3\left(4-x\right)}\)
\(\Leftrightarrow2x^3+3x^2+7x-12+4\left(3-\sqrt{3\left(4-x\right)}\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2+5x+12\right)+\dfrac{12\left(x-1\right)}{3+\sqrt{3\left(4-x\right)}}\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2+5x+12+\dfrac{12}{3+\sqrt{3\left(4-x\right)}}\right)\ge0\)
Do \(2x^2+5x+12+\dfrac{12}{3+\sqrt{3\left(4-x\right)}}>0\) với mọi x nên BPT tương đương:
\(x-1\ge0\Rightarrow x\ge1\)
\(\Rightarrow1\le x\le4\Rightarrow a^2+b^2=17\)