">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
18 tháng 3 2022

\(\sqrt{2x^3+3x^2+6x+16}-\sqrt{4-x}\ge2\sqrt{3}\) (ĐK: \(-2\le x\le4\)

\(\Leftrightarrow\sqrt{2x^3+3x^2+6x+16}\ge2\sqrt{3}+\sqrt{4-x}\)

\(\Leftrightarrow2x^3+3x^2+6x+16\ge12+4-x+4\sqrt{3\left(4-x\right)}\)

\(\Leftrightarrow2x^3+3x^2+7x\ge4\sqrt{3\left(4-x\right)}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x^3+3x^2+7x\right)^2\ge48\left(4-x\right)\\2x^3+3x^2+7x\ge0\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(4x^5+16x^4+53x^3+95x^2+144x+192\right)\ge0\)(\(x\ge0\))

\(\Leftrightarrow x-1\ge0\)(vì \(x\ge0\))

\(\Leftrightarrow x\ge1\)

Vậy bất phương trình có tập nghiệm là \(\left[1;4\right]\).

\(a^2+b^2=1^2+4^2=17\)

NV
19 tháng 3 2022

ĐKXĐ: \(-2\le x\le4\)

\(\sqrt{2x^3+3x^2+6x+16}\ge\sqrt{4-x}+2\sqrt{3}\)

\(\Leftrightarrow2x^3+3x^2+6x+16\ge16-x+4\sqrt{3\left(4-x\right)}\)

\(\Leftrightarrow2x^3+3x^2+7x\ge4\sqrt{3\left(4-x\right)}\)

\(\Leftrightarrow2x^3+3x^2+7x-12+4\left(3-\sqrt{3\left(4-x\right)}\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2+5x+12\right)+\dfrac{12\left(x-1\right)}{3+\sqrt{3\left(4-x\right)}}\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2+5x+12+\dfrac{12}{3+\sqrt{3\left(4-x\right)}}\right)\ge0\)

Do \(2x^2+5x+12+\dfrac{12}{3+\sqrt{3\left(4-x\right)}}>0\) với mọi x nên BPT tương đương:

\(x-1\ge0\Rightarrow x\ge1\)

\(\Rightarrow1\le x\le4\Rightarrow a^2+b^2=17\)

23 tháng 12 2015

:)

23 tháng 12 2015

38) \(I=\int\limits_{\pi/2}^{2\pi/3} \frac{2dx}{2\sin x-\cos x+1}=\int\limits_{\pi/2}^{2\pi/3} \frac{2dx}{4\sin\frac{x}{2}\cos\frac{x}{2}+2\sin^2\frac{x}{2}}=\int\limits_{\pi/2}^{2\pi/3}\frac{dx}{\cos^2\frac{x}{2}(2\tan\frac{x}{2}+\tan^2\frac{x}{2})}\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow dt=\frac{dx}{2\cos^2 \frac{x}{2}}\) và \(x=\frac{\pi}{2}\Rightarrow t=1,x=\frac{2\pi}{3}\Rightarrow t=\sqrt{3}.\)

Vậy \(I=\int\limits_1^{\sqrt{3}} \frac{2dt}{2t+t^2}=\int\limits_1^{\sqrt{3}} (\frac{1}{t}-\frac{1}{t+2})=(\ln |t|-\ln|t+2|)\Big|_1^{\sqrt{3}}=\frac{3}{2}\ln 3-\ln(2+\sqrt{3})\)

39)  \(I=\int\limits_{\pi/6}^{\pi/3} \frac{\tan xdx}{\cos^2 x(1-\tan x)}\)

Đặt \(t=\tan x\Rightarrow dt=\frac{dx}{\cos^2 x}\) và \(x=\frac{\pi}{6}\Rightarrow t=\frac{1}{\sqrt{3}},x=\frac{\pi}{3}\Rightarrow t=\sqrt{3}.\)

Vậy \(I=\int\limits_{1/\sqrt{3}}^{\sqrt{3}}\frac{tdt}{1-t}==\int\limits_{1/\sqrt{3}}^{\sqrt{3}}(\frac{1}{1-t}-1)dt=(-\ln|1-t|-t)\Big|_{1/\sqrt{3}}^{\sqrt{3}}\)

 
15 tháng 5 2016

lớp mí z bn, bn tên phạm thị cẩm tú

mk là đặng thị cẩm tú

 

15 tháng 5 2016

mk lop 6

xin loi nha, mk ko bik lm, khó quá

7 tháng 9 2021

nhung kia chi nhung xinh qua to cung la fan chi nhung cau la fan chi nhugng thi ket ban nhe

12 tháng 9 2021

thích thích tớ là fan thị nhung

4 tháng 7 2016

lớp 12 đang thi ! chị đưa cái đo lên ai mà làm !!

26 tháng 2 2017

21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)

=> (P):2x - y +z - 6 = 0. ĐA: D

22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C

34. ĐA: A.

37. M --->Ox: A(3; 0; 0)

Oy: B(0; 1; 0)

Oz: C(0; 0;2)

Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B