Tính nhanh:
a) \(\frac{327.412+400}{328.412-12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{327\cdot412+400}{328\cdot412-12}\)
\(=\frac{327\cdot412+400}{\left(327+1\right)\cdot412-12}\)
\(=\frac{327\cdot412+400}{327\cdot412+\left(412-12\right)}\)
\(=\frac{327\cdot412+400}{327\cdot412+400}\)
\(=1\)
a)=15.2154/1505
=6462/301
b)=461179719/138076
c,=134724+400/135136-12
=135124/135124
=1
a)=15.(21/43+33?55)=15.234/215=16 14/43
b)=328.412-412+400/328.412-12=328.412-12/328.412-12=1
c)7217721 hay là 721721 vậy?
a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)
b)
\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)
Lời giải:
a. $153^2-53^2=(153-53)(153+53)=100.206=20600$
b.
$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$
$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$
$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$
$=2020+2019+2018+2017+...+2+1$
$=\frac{2020.2021}{2}=2041210$
a) Ta có: \(A=\dfrac{37^3+12^3}{49}-37\cdot12\)
\(=\dfrac{\left(37+12\right)\left(37^2-37\cdot12+12^2\right)}{49}-37\cdot12\)
\(=37^2-2\cdot37\cdot12+12^2\)
\(=\left(37-12\right)^2\)
\(=25^2=625\)
\(a,=2^3\left(17-14\right)=2^3\cdot3=24\\ b,=80-\left(130-8^2\right)=80-\left(130-64\right)=80-66=14\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{11\cdot12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\)
Vậy \(A=\frac{11}{12}\)
Chúc bạn học tốt ^^!!!
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{11\times12}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\)
Chúc bạn học tốt!
#Huyền#
\(\frac{327\cdot412+400}{328\cdot412-12}=\frac{327\cdot412+400}{\left(327+1\right)\cdot412-12}=\)\(\frac{327\cdot412+400}{327\cdot412+1\cdot412-12}=\frac{327\cdot412+400}{327\cdot412+412-12}=\)\(\frac{327\cdot412+400}{327\cdot412+400}=\frac{1}{1}=1\)
\(\frac{327.412+400}{328.412-12}\) = \(\frac{328.412-412+400}{328.412-12}\)= \(\frac{328.412-\left[412-400\right]}{328.412-12}\) = \(\frac{328.412-12}{328.412-12}\) = 1