Cho các số a, b, c dương và abc = 1
CMR: \(\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này đùng Shinra nhé
ưu điểm của shinra : rất khó tìm ra lỗi sai , nếu vừa nói vừa làm thì có thể thầy cô cũng ko nhận ra :)
nhược điểm : nếu bị để ý kĩ thì SM luôn đấy :)
áp dụng BDT cô si ta có :
\(a+1+1\ge3\sqrt[3]{a}.\) tương tự với các mẫu còn lại
vì nó năm ở dưới mẫu dấu > thành dấu <
\(vt\le\frac{1}{3\sqrt[3]{a}}+\frac{1}{3\sqrt[3]{b}}+\frac{1}{3\sqrt[3]{c}}.\)
\(abc=1\Leftrightarrow a=\frac{1}{bc}\)
\(VT\le\frac{1}{\frac{3}{\sqrt[3]{bc}}}+\frac{1}{\frac{3}{\sqrt[3]{ac}}}+\frac{1}{\frac{3}{\sqrt[3]{ab}}}=\frac{\sqrt[3]{bc}+\sqrt[3]{ac}+\sqrt[3]{ab}}{3}\)
có \(a+b+C\ge3\sqrt[3]{abc}=3\) ( abc=1) ( nhớ kĩ cái này là chìa khóa để rứt điểm bài này ko được quên nha )
nhân cả tử cả mẫu cho 3 ta được
\(VT\le\frac{3\sqrt[3]{bc}+3\sqrt[3]{ac}+3\sqrt[3]{ab}}{9}\)
\(3\sqrt[3]{b.c.1}\le\left(b+c+1\right)\) tương tự với các số hạng còn lại ta được
đến đây ta dùng Shinra nhé
\(VT\le\frac{2\left(a+b+c\right)+3}{9}=\frac{6+3}{9}=1\)
Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)
Thật vậy:
\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)
Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)
\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)
mà \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)
Áp dụng các bđt trên vào bài toán ta có
∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)∑\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)∑\(\frac{a+b+c}{a+b+c}=1\)
Bất đẳng thức được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm
BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)
\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)
\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)
Theo BĐT Svacxo:
\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)
Vậy ta có đpcm.
P/s: Đúng ko ta?
Game này ez thôi bạn
\(bđt\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)
\(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\Rightarrow bđt\Leftrightarrow\sum\frac{x}{x+2y}\ge1\)
Bđt trên đúng do: \(\sum\frac{x}{x+2y}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\rightarrowđpcm\)
\("="\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\left(a^2+b^2+1^2\right)\left(1^2+1^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2=\left(a+b+c\right)^2\)
\(\Rightarrow\frac{1}{1+a^2+b^2}=\frac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}\le\frac{2+c^2}{\left(a+b+c\right)^2}\)
Tương tự : \(\frac{1}{1+b^2+c^2}=\frac{1+1+a^2}{\left(1+b^2+c^2\right)\left(1+1+a^2\right)}\le\frac{2+a^2}{\left(a+b+c\right)^2}\)
\(\frac{1}{1+c^2+a^2}=\frac{1+1+b^2}{\left(1+c^2+a^2\right)\left(1+1+b^2\right)}\le\frac{2+b^2}{\left(a+b+c\right)^2}\)
Cộng từng vế BĐT lại, ta được :
\(\frac{1}{1+a^2+b^2}+\frac{1}{1+b^2+c^2}+\frac{1}{1+c^2+a^2}\le\frac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{6+a^2+b^2+c^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)
Vậy BĐT đã được chứng minh
Đặt \(\left(a;b;c\right)\rightarrow\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
Ta có:
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)
\(=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\left(1\right)\)
Áp dụng BĐT phụ \(x^3+y^3\ge xy\left(x+y\right)\)
\(\Rightarrow\left(1\right)\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)
\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)
\(=\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{z}{xyz\left(x+y+z\right)}\)
\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)
Dấu "=" xảy ra tại \(x=y=z=1\) hay \(a=b=c=1\)
Nhầm dòng thứ 3 dưới lên ạ:(
\(\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{y}{xyz\left(x+y+z\right)}\) mới đúng nha !
Vô phần câu hỏi tương tự là có bài giải chi tiết
HT
tl
bn chỉ cần tìm câu hỏi tương tự sẽ có bài giải chi tiết
HT