Cho hình thang ABCD cân có AB//CD và AB < CD. Kẻ các đường cao AE, BF
a) Chứng minh DE=CF
b) Gọi I là giao điểm của 2 đường chéo hình thang ABCD. Chứng minh IA=IB
c) Tia DA và tia CB cắt nhau tại O. Chứng minh OI vừa là trung trực của AB vừa là trung trực của DC
d) Tính các góc của hình thang ABCD nếu biết ABC-ADC=180 độ
a) Xét \(\Delta\)ADE và \(\Delta\)BCF :
AED^ = BFC^ =90o
AD = BC
ADE^ = BCF^
=> \(\Delta\)ADE = \(\Delta\)BCF (cạnh huyền_góc nhọn)
=> DE = CF (2 cạnh tương ứng)
b) Xét \(\Delta\)DAB và \(\Delta\)CBA:
AD= BC
DAB^ = CBA^
AB chung
=> \(\Delta\)DAB = \(\Delta\)CBA (c.g.c)
=> ADB^ =BCA^ (2 góc tương ứng)
Ta có: ADC^ = ADB^ + BDC^ => BDC^ = ADC^ - ADB^
BCD^ = BCA^ + ACD^ => ACD^ = BCD^ - BCA^
mà ADC^ = BCD^ và ADB^ = BCA^ (cmt)
=> BDC^ = ACD^
=> \(\Delta\)DIC cân tại I
=> ID = IC
Xét \(\Delta\)AID và \(\Delta\)BIC:
AD = BC
ADI^ = BCI^ (cmt)
ID = IC (cmt)
=> \(\Delta\)AID = \(\Delta\)BIC (c.g.c)
=> IA = IB (2 cạnh tương ứng)
c)
d)
---ko làm nữa đâu--- +.+