K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021
Gọi d là UCLN (12n+1;12n+3), d thuộc N sao -->12n+1 = 5(12n+1) = 60n+5chia hết cho d 30n+2=2(30n+2)=60n+4 chia hết cho d ->(60n+5)-(60n+4) chia hết cho d 1 chia hết cho d => d=1=> ps 12n+1/30n+2 tối giản
21 tháng 4 2020

hỏi chị google í ,lần sau làm màu vừa thui

21 tháng 4 2020

Goi d là ƯCLN ( 12n+1 ; 30n+2 ) 

Ta có:\(12n+1⋮d;30n+2⋮d\)

\(\Rightarrow60n+5⋮d;60n+4⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow12n+1;30n+2\) nguyên tố cùng nhau

=> đpcm

15 tháng 4 2017

Gọi ucln là a

ta co:12n+1 chia het cho a

        30n+2chia het cho a

=>60n+5 chia het cho a

    60n+4 chia het cho a

=>60n+5-60n+4

    =1

vì trong 2 số,cả hai chia hết cho 1=>đo la pstg

tk cho mk nhé

mk hoc cung voi cau ne

mk la hoang anh hoc lop 6B thcs duong xa

14 tháng 4 2017

tời khó zậy ai ủng hộ tích nha

thì nó đã là 1 phân số tối giản rồi thì chứng minh làm gì nữa

tick vào chữ đúng là được

17 tháng 8 2016

Gọi d là ƯCLN(12n+1;30n+2)

Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)

           \(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)

Mà \(n\in N\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản              ĐPCM

17 tháng 8 2016

Giải:

Gọi d = UCLN ( 12n + 1; 30n + 2 )

Ta có: 

\(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)

\(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)

Vì \(d\in N\) nên d = 1

Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.

\(\Rightarrowđpcm\)

 

8 tháng 8 2016

Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)

=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d

=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d

=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

=> phân số 12n + 1/30n + 2 là phân số tối giản

27 tháng 4 2017

cm 2 so do ngto cung nhau la dc

29 tháng 5 2018

Gọi d là ƯC(12n+1,30n+2). Ta có :

( 12n + 1 ) \vdots d => 5.( 12n + 1) \vdots d hay ( 30n + 5 ) \vdots d

( 30n + 2 ) \vdots d => 2 . ( 30n + 2 ) \vdots d hay ( 30n + 4 ) \vdots d

=> ( 30n + 5 ) - ( 30n + 4 ) = 1

               => d = 1

Vậy : \frac{12n+1}{30n+2}  là phân số tối giản 

29 tháng 5 2018

Ta có : \(\frac{12n+1}{30n+2}\)là phân số tối giản <=> ƯCLN(12n + 1; 30n + 2) \(\in\) {1; -1}

Gọi ƯCLN(12n + 1; 30n + 2) là d

=>   \(12n+1⋮d\)     =>  \(5\left(12n+1\right)⋮d\)            =>      \(60n+5⋮d\)

         \(30n+2⋮d\)          \(2\left(30n+2\right)⋮d\)                      \(60n+4⋮d\)

=> (60n + 5) - (60n + 4) = 1 \(⋮\)d => d \(\in\){1; -1}

Vậy \(\frac{12n+1}{30n+2}\)tối giản

21 tháng 6 2017

Gọi d là ƯCLN của tử và mẫu .

=>12n +1 chia hết cho d               60n+5 chia hết cho d

=> 30n +2chia hết cho d               60n +4 chia hết cho d

=> (60n+5) -(60n+4) chia hết cho d

=>1 chia hết cho d

=> d=1 => điều phải chứng minh (đpcm) 

29 tháng 8 2016

a) 

Gọi d là ước chung của tử và mẫu 

=> 12n + 1 chia hết cho d              60n + 5 chia hết cho d 

                                        => 

 30n +2 chia hết cho d                      60n + 4 chia hết cho d 

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 => ( đpcm )

1 tháng 3 2018

Câu a) làm rồi mình làm câu b) nhé 

\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

 Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

25 tháng 4 2016

Gọi d là WCLN của 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d và 30n + 1 chia hết d

=> 5(12n+1 ) chia hết d và 2( 30n + 1) chia hết d

=> 60n+5 chia hết cho d và 60n + 4 chai hết cho d

=> (60n+5)-(60+4) chia hết cho d => 1 chia hết d

=> d=1

Vạy mội p/s có dạng 12n+1/30n+2 đều là p/s tối giản

25 tháng 4 2016

De 12n+1/30n+2la phan so toi gian thi 12n+1 va 30n+2 co UCLN la 1

Goi d la UCLN(12n+1;30n+2)

12n+1 chia het cho d ; 30n+2 chia het cho d

=>(30n+2)-(12n+1) chia het cho d

=30n+2-12n-1 chia het cho d

=(30n-12n)+(2-1) chia het cho d

8n chia het cho d la 1 chia het cho d

=> n=8n thi 12n+1/30n+2 la phan so toi gian