K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2023

lớp mình ko giải kiểu đấy nhg cảm ơn n

a) 3;5;11

e) 9;30

13 tháng 6 2018

a) ta có: \(\frac{3n+15}{n+1}=\frac{3n+3+12}{n+1}=\frac{3.\left(n+1\right)+12}{n+1}=3+\frac{12}{n+1}\)

Để 3n+15/n+1 có giá trị nguyên

\(\Rightarrow\frac{12}{n+1}\inℤ\Rightarrow12⋮n+1\)

\(\Rightarrow n+1\inƯ_{\left(12\right)}=\left(1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right)\)

rùi bn thay giá trị của n+1 vào để tìm n nhé!

b) ta có: \(\frac{3n+5}{n-2}=\frac{3n-6+11}{n-2}=\frac{3.\left(n-2\right)+11}{n-2}=3+\frac{11}{n-2}\)

Để 3n+5/n-2 có giá trị nguyên

=> 11/n-2 thuộc z

=> 11 chia hết cho n-2 => n-2 thuộc Ư(11) = (1;-1;11;-11)

c) ta có: \(\frac{2n+13}{n-1}=\frac{2n-2+15}{n-1}=\frac{2.\left(n-1\right)+15}{n-1}=2+\frac{15}{n-1}\)

Để 2n+13/n-1 có giá trị nguyên => 15/n-1 thuộc Z

=> 15 chia hết cho n-1 => n-1 thuộc Ư(15)=(1;-1;3;-3;5;-5;15;-15)

d) ta có: \(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=\frac{3.\left(2n+1\right)+2}{2n+1}=3+\frac{2}{2n+1}\)

26 tháng 2 2017

3n + 1 phần n > 3n + 7 phần n + 2. Làm bạn nha!!!

26 tháng 2 2017

giải thích rõ ra đi bạn

4 tháng 3 2022

giúp mik nhanh vs các bn ơiiiiii

:(

4 tháng 3 2022

-bạn tự lập bảng nhé 

a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n-31-111-11
n4214-8

 

c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

18 tháng 2 2017

\(A=\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)

Để \(A=3-\frac{17}{n+4}\in Z\Leftrightarrow\frac{17}{n+4}\in Z\)

Hay \(n+4\inƯ\left(17\right)=-17;-1;1;17\)

\(\Rightarrow n=-21;-5;-3;13\)

18 tháng 2 2017

lớp 5 chưa học âm đâu