Rút gọn biểu thức đại số
A= (15x+2y) - [(2x+3)-(5x+y)]
B= -(12x+3y) + (5x-2y)-[13x+(2y-5)]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\) \(A=\left(15x+2y\right)-\left[\left(2x+3\right)-\left(5x+y\right)\right]\)
\(A=15x+2y-2x-3+5x+y\)
\(A=\left(15x-2x+5x\right)+\left(2y+y\right)-3\)
\(A=18x+3y-3\)
\(A=3\left(6x+y-1\right)\)
\(b.\) \(B=-\left(12x+3y\right)+\left(5x-2y\right)-\left[13x+\left(2y-5\right)\right]\)
\(B=-12x-3y+5x-2y-13x-2y+5\)
\(B=-\left(12x-5x+13x\right)-\left(3y+2y+2y\right)+5 \)
\(B=-20x-7y+5\)
a,thay x=1,y=-1
=>A=(15.1+2.-1)-[(2.1+3)-(5.1+-1)]=13-[5-4]=12
b,thay=-1/2,y=1/7
=>B=4
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
a: =-2/5x^5y^7
Hệ số: -2/5
bậc: 12
b: =3/4*x^2y^3*12/5x^4=9/5x^6y^3
Hệ số: 9/5
bậc: 9
c: =4/9x^6y^6
hệ số: 4/9
bậc: 12
d: =2/5x^6y^6
hệ số: 2/5
bậc: 12
c: \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)
=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = (6x2 - 5x2) + (9xy + 2xy) - y2 = x2 + 11xy - y2
b) Sửa đề lại đi nhé
c) (25x2y - 13x2y + y3) - M = 11x2y - 2y2
=> M = (25x2y - 13x2y + y3) - (11x2y - 2y2)
=> M = 25x2y - 13x2y + y3 - 11x2y + 2y2
=> M = x2y + y3 + 2y2
d) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7
a) Ta có : M = 6x2 + 9xy - y2 - (5x2 - 2xy)
= 6x2 + 9xy - y2 - 5x2 + 2xy
= x2 + 11xy - y2
b) Ta có M = x2 - 7xy + 8y2 - (3xy - 24y2)
= x2 - 7xy + 8y2 - 3xy + 24y2
= x2 - 10xy + 32y2
c) Ta có M = 25x2.y- 13x2y + y3 - (11x2y - 2y2)
= 25x2.y- 13x2y + y3 - 11x2y + 2y2
= x2y + y3 + 2y2
d) Ta có M = -(12x4 - 15x2y + 2xy2 + 7)
= -12x4 + 15x2y - 2xy2 - 7
\(1)A=2x\left(x-y\right)-y\left(y-2x\right)\)
\(=2x^2-2xy-y^2+2xy\)
\(=2x^2-y^2=2.\left(-\dfrac{2}{3}\right)^2-\left(-\dfrac{1}{3}\right)^2\)
\(=\dfrac{8}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)
\(2)B=5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(=5x^2-20xy-4y^2+20xy\)
\(=5x^2-4y^2=5.\left(-\dfrac{1}{5}\right)^2-4.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
\(3)C=\text{x.(x^2-y^2)-x^2(x+y)+y(x^2-x)}\)
\(=x^3-xy^2-x^3-x^2y+x^2y-xy\)
\(=-xy\left(x+1\right)\)