cho b = 3+32+33+34+...... +3102
chứng minh b chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
\(A=1+3+3^2+3^3+...+3^{102}+3^{103}\)
\(\Rightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{102}+3^{103}\right)\)
\(\Rightarrow A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)\)
\(\Rightarrow A=\left(1+3\right)\left(1+3^2+...+3^{102}\right)\)
\(\Rightarrow A=4\left(1+3^2+...+3^{102}\right)⋮4\)
a)abc chia hết 27
=>abc chia hết 3 và 9
mà abc chia hết 9 thì 100% chia hết 3
mà abc chia hết 9=>(a+b+c) chia hết 9
=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3
=>bca chia hết 27
a ) vì abc chia hết cho 27
=> bca chia hết cho 27 ( hiển nhiên đúng )
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
B=3+32+33+...+360
=(3+32+33)+...+(358+359+360)
=3.(1+3+32)+...+358.(1+3+32)
=3.13+...+358.13
=13.(3+...+358) chia hết cho 13 (đpcm)
a, C=(1+3+3^2)+..........+3^9.(1+3+3^2)
C=13+.......+3^9.13
C=13(1+.....+3^9) chia hết cho 13
Vậy C chia hết cho 13
b, C=(1+3+3^2+3^3)+...........+3^8(1+3+3^2+3^3)
C=40+..........+3^8.40
C=40(1+....+3^8) chia hết cho 40
Vậy C chia hết cho 40
a) A = (1+3+32) + (33 + 34 + 35) + ... + (39 + 310 + 311)
A = 13 + 33.(1+3+32) + ... + 39.(1+3+32)
A = 13 + 33.13 + ... + 39.13
A = 13.(1+33+...+39) chia hết cho 13 (đpcm)
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 40 + 34.(1 + 3 + 32 + 33) + 38.(1 + 3 + 32 + 33)
A = 40 + 34.40 + 38.40
A = 40.(1 + 34 + 38) chia hết cho 40 (đpcm)
a) Ta sẽ dùng cách cm gián tiếp:
Cho A = 14^13 + 14^12 + .... +14 + 1
=> 14A = 14^14 + 14^13 +...+14^2 +14
=> 14A - A = (14^14 + 14^13 +...+14^2 +14) - (14^13 + 14^12 + .... +14 + 1)
13A = 14^14 - 1
Vì 13A chia hết cho 13 nên 14^14 - 1 chia hết cho 13 (ĐPCM)
b) Tương tự như vậy:
Cho B = 2015^2015 + 2015^2014 + .... +2015 + 1
=> 2015B = 2015^2016 + 2015^2015 +...+2015^2 +2015
=> 2015B - B = (2015^2016 + 2015^2015 +...+2015^2 +2015) - (2015^2015 + 2015^2014 + .... +2015 + 1)
2014B = 2015^2016 - 1
Vì 2014B chia hết cho 2014 nên 2015^2016 - 1 chia hết cho 2014 (ĐPCM)
Bạn học đồng dư rồi đúng ko? ình sẽ giải theo cách đồng dư nhé :
a, 14^14đồng dư 1^14đồng dư 1(mod13)
Suy ra 14^14 -1 đồng dư 1-1 đồng dư 0 (mod13) (đpcm)
b, tương tự bạn nhé 2015^2016 đồng dư 1^2016 đồng dư 1
...........rồi bạn suy ra nhé