cho tổng S=1+3+32+...+311
chứng tỏ rằng: S:13
chứng tỏ rằng S:40
trả lời tất cả các câu hỏi của tui được không giúp nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = ( 3 + 32 +33)+(34+35+36) + (37+38+39)
S = 3.(1+3+9)+34.(1+3+9)+37.(1+3+9)
S = 3.13 + 34.13+37.13
S = 13.(3+34+37) ⋮13 ( đpcm)
Tick cho mình
`#3107.101107`
`S = 3 + 3^2 + 3^3 + ... + 3^9`
`= (3 + 3^2 + 3^3) + ... + (3^7 + 3^8 + 3^9)`
`= 3(1 + 3 + 3^2) + ... + 3^7(1 + 3 +3^2)`
`= (1 + 3 + 3^2)(3 + ... + 3^7)`
`= 13(3 + ... + 3^7)` $\vdots 13$
$\Rightarrow S \vdots 13.$
a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)
\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)
Vậy ta có biểu thức:
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)
Vậy B < 1 (đpcm)
Giải:
a) Ta có:
1/22=1/2.2 < 1/1.2
1/32=1/3.3 < 1/2.3
1/42=1/4.4 < 1/3.4
1/52=1/5.5 < 1/4.5
1/62=1/6.6 < 1/5.6
1/72=1/7.7 < 1/6.7
1/82=1/8.8 <1/7.8
⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
B<1/1-1/8
B<7/8
mà 7/8<1
⇒B<7/8<1
⇒B<1
b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46
S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=45/46
Vì 45/46<1 nên S<1
Vậy S<1
Chúc bạn học tốt!
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
2) 162008 - 82000
= (...6) - (84)500
= (...6) - (...6)500
= (...6) - (...6)
= (...0) chia hết cho 10
3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2
=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2
=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2
=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2
=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2
=> 1100 + 800 + 1125 = (x + 1)2
=> 3025 = (x + 1)2, vô lí
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
Ta có :
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 310 + 311
S = (1 + 3 + 32) + (33 + 34 + 35 ) + (36 + 37 + 38 ) + (39 + 310 + 311)
S = 1 . (1 + 3 + 32 ) + 33 . (1 + 3 + 32) + 36 . (1 + 3 + 32) + 39 . (1 + 3 + 32)
S = 1 . 13 + 33 . 13 + 36 . 13 + 39 . 13
S = 13 . (1 + 33 + 36 + 39) chia hết cho 13 nên S chia hết cho 13 (ĐPCM)
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 310 + 311
S = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
S = 1.(1 + 3 + 32 + 33) + 34 . (1 + 3 + 32 + 33) + 38 . (1 + 3 + 32 + 33)
S = 1 . 40 + 34 . 40 + 38 .40
S = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Ủng hộ mk nha !!! ^_^