timf Min
a)I=5x2+9y2-12xy+24x-48y+82
b)K=x2+y2-xy-2y-2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+9y^2-12xy+24x-48y+2080=4x^2-2.2x.3y+9y^2+16\left(2x-3y\right)+64+x^2-8x+16+2000=\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x-4\right)^2+2000=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\)
Ta có \(\left(2x-3y+8\right)^2\ge0\)
\(\left(x-4\right)^2\ge0\)
Nên \(\left(2x-3y+8\right)^2+\left(x-4\right)^2\ge0\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\ge2000\)
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}2x-3y+8=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\)
Vậy Min của \(5x^2+9y^2-12xy+24x-48y+2080\) là 2000 và xảy ra khi x=4 và y=\(\dfrac{16}{3}\)
$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$
$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$
$\Leftrightarrow x=3; y=-2$
---------------------
$B=9x^2+y^2+2z^2-18x+4z-6y+30$
$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$
$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$
$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$
$\Leftrightarrow x=1; y=3; z=-1$
$C=x^2+y^2+z^2-xy-yz-xz+3$
$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$
$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$
$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$
$\Rightarrow C\geq 3$
Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$
$\Leftrihgtarrow x=y=z$
--------------------------------------
$D=5x^2+2y^2+4xy-2x+4y+2021$
$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$
$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$
$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$
$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$
Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$
$\Leftrightarrow x=1; y=-2$
\(4x^2+9y^2+64-12xy-48y+32x+x^2-8x+16+2\)
\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=4 và y=\(\frac{16}{3}\)
Vậy MINP=2 <=> x=4;y=16/3
b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)
c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)
Bài làm
a) xy + y2 - x - y
= ( xy + y2 ) - ( x + y )
= y( x + y ) - ( x + y )
= ( x + y )( y - 1 )
b) 25 - x2 + 4xy - 4y2
= 25 - ( x2 - 4xy + 4y2 )
= 25 - ( x - 2y )2
= ( 5 - x + 2y )( 5 + x - 2y )
c) xy + xz - 2y - 2z
= ( xy + xz ) - ( 2y + 2z )
= x( y + z ) - 2( y + z )
= ( y + z )( x - 2 )
d) x2 - 6xy + 9y2 - 25z2
= ( x2 - 6xy + 9y2 ) - 25z2
= ( x - 3y )2 - 25z2
= ( x - 3y - 5z )( z - 3y + 5z )
e) 3x2 - 3y2 - 12x + 12y
= 3( x - y )( x + y ) - 12( x - y )
= ( x - y )[ 3( x + y ) - 12 ]
f) 4x3 + 4xy2 + 8x2y - 16x
= 4x( x2 + y2 + 2xy - 4 )
= 4x[ ( x + y)2 - 4 ]
= 4x( x + y - 2 )( x + y + 2 )
g) x2 - 5x + 4
= x2 - x - 4x + 4
= x( x - 1 ) - 4( x - 1 )
= ( x - 1 )( x - 4 )
h) x4 + 5x2 + 4
= x4 + x2 + 4x2 + 4
= x2( x2 + 1 ) + 4( x2 + 1 )
= ( x2 + 1 )( x2 + 4 )
i) 2x2 + 3x - 5
= 2x2 - 5x + 2x - 5
= 2x( x + 1 ) - 5( x + 1 )
= ( x + 1 )( 2x - 5 )
k) x3 - 2x2 + 6x - 5 ( không biết làm )
l) x2 - 4x + 3
= ( x2 - 4x + 4 ) - 1
= ( x - 2 )2 - 1
= ( x - 3 )( x - 1 )
# Học tốt #
3y=z
\(S=5x^2+z^2-4xz-24x+16z+2080\)
\(S=\left(x-2z+8\right)^2+4x^2-40x+2080-8^2\)
\(S=\left(x-2z+8\right)^2+4\left(x-5\right)^2+2080-8^2-4.5^2\)
Smin =\(2080-8^2-4.5^2\)
\(a,VP=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left[x^2-x.2y+\left(2y\right)^2\right]\\ =x^3+\left(2y\right)^3=x^3+8y^3=VT\left(đpcm\right)\\ b,VT=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\left(x-y\right)\\ =x^3-y^3-3xy\left(x-y\right)\\ =x^3-3x^2y+3xy^2-y^3\\ =\left(x-y\right)^3=VP\left(đpcm\right)\)
\(c,VT=\left(x-3y\right)\left(x^2+3xy+9y^2\right)-\left(3y+x\right)\left(9y^2-3xy+x^2\right)\\ =\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]-\left(x+3y\right).\left[x^2-x.3y+\left(3y\right)^2\right]\\ =x^3-27y^3-\left(x^3+27y^3\right)\\ =-54y^3=VP\left(đpcm\right)\)