10/121 x 49/2 : 35/11 bàng bn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow\left[{}\begin{matrix}x+7=11\\x+7=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-18\end{matrix}\right.\)
\(\frac{2}{3}.x=\frac{1}{3}\)1) x-\(\frac{10}{3}\)=\(\frac{7}{15}.\frac{3}{5}\)
x-10/3=7/25
x=7/25+10/3
x=\(\frac{271}{75}\)
2)\(\frac{8}{23}.\frac{46}{24}.x=\frac{1}{3}\)
2/3.x=1/3
x=1/3:2/3
x=1/2
\(\left(\dfrac{6:\dfrac{3}{5}-\dfrac{17}{16}.\dfrac{6}{7}}{\dfrac{21}{5}.\dfrac{10}{11}+\dfrac{57}{11}}-\dfrac{\left(\dfrac{3}{20}+\dfrac{1}{2}-\dfrac{1}{15}\right).\dfrac{12}{49}}{\dfrac{10}{3}+\dfrac{2}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{\dfrac{509}{56}}{9}-\dfrac{\dfrac{7}{12}.\dfrac{12}{49}}{\dfrac{32}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{509}{504}-\dfrac{\dfrac{1}{7}}{\dfrac{32}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{509}{504}-\dfrac{9}{224}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\dfrac{1955}{2016}.x=\dfrac{215}{96}\)
\(\Rightarrow x=\dfrac{215}{96}:\dfrac{1955}{2016}\)
\(\Rightarrow x=\dfrac{903}{391}\)
`[ 6 : 3/5 - 17/16 . 6/7 : 21/5 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 : 10/3 + 2/9 ] . x = 215/96`
`=>[ 6 . 5/3 - 17/16 . 6/7 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=>[10- 51/56 . 6/7 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 153/196 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 255/1372 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 1275/7546 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> (10- 1275/7546 + 57/11 - 7/12. 12/49 . 3/10 + 2/9 ) . x = 215/96`
`=> ( 10- 1275/7546 + 57/11 -343/600 . 3/10 + 2/9 ) . x = 215/96`
`=> ( 10- 1275/7546 + 57/11 -343/2000 + 2/9 ) . x = 215/96`
`=>15,06357671 . x= 215/96`
`=> x= 215/96: 15,06357671`
`=>x= 0,1486754027`
Đề có phải như vậy không nhỉ ?
7/11
\(\dfrac{7}{11}\)