Cho pt ax2+bx+c=0 có 2 nghiệm x1,x2 thoả mãn x1=x22.Chứng minh rằng : b3+a2c+ac2=3abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Ta có theo Viet: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1.x_2=\frac{c}{a}\end{cases}}\Rightarrow\hept{\begin{cases}x^2_2+x_2=-\frac{b}{a}\\x^3_2=\frac{c}{a}\end{cases}\Rightarrow\frac{x^2_2+x_2}{x_2^3}=-\frac{b}{c}=\frac{x_2+1}{x_2^2}}\)
Lại có \(\frac{b^3+a^2c+ac^2}{abc}=\frac{b^2}{ac}+\frac{a}{b}+\frac{c}{b}=\left(x_2^2+x_2\right)\frac{x_2+1}{x_2^2}-\frac{1}{x_2^2+x_2}-\frac{x_2^2}{x_2+1}\)
\(=\frac{x_2\left(x_2+1\right)^2}{x_2^2}-\frac{1}{x_2^2+x_2}-\frac{x_2^2}{x_2+1}=\frac{\left(x_2+1\right)^2}{x_2}-\frac{1}{x_2\left(x_2+1\right)}-\frac{x_2^2}{x_2+1}\)
\(=\frac{\left(x_2^2+2x_2+1\right)\left(x_2+1\right)-1-x_2^3}{x_2\left(x_2+1\right)}=\frac{x_2^3+3x_2^2+3x_2+1-1-x_2^3}{x_2^2+x_2}\)
\(=\frac{3\left(x_2^2+x_2\right)}{x_2^2+x_2}=3\)
Từ đó suy ra \(b^3+a^2c+ac^2=3abc\left(đpcm\right).\)
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v
PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong
b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)
c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\) quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)
\(4< m< 6\)
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2
1) Thay m=1 vào phương trình, ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1
1) Bạn tự làm
2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)
Vậy ...