tìm sô tự nhiên n để phân số \(\frac{2n+1}{n+2}\) rút gọn được
CMR :p và p2+2 là các số nguyên tố thì p3+2 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số các ước của N là:
(1 + 1)(2 + 1)(3 + 1)(4 + 1) = 120 (ước)
Đ/S:...
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
ta có:
\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\)
=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3
2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)
=> n+2 chia hết cho 3
=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.
Ta thấy
- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2
- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p
Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2
=> p^2 không chia hết cho 2 nên p không chia hết cho 2
=> p^3 không chia hết cho 2
Vậy p^3 +2 là số nguyên tố