mình cần lời giải chi tiết ạ :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
a) \(=x\left(3x^3-x^2+5\right)\)
b) \(=\left(2x+3y\right)\left(x-y\right)\)
c) \(=\left(x^2-3x\right)-\left(4x-12\right)=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
a, = x.(3x3 - x2 + 5)
b, = 2x.(x - y) + 3y.(x - y) = (x - y).(2x + 3y)
c, = x2 - 3x - 4x + 12 = (x2 - 3x) - (4x - 12) = x.(x - 3) - 4.(x - 3) = (x - 3).(x - 4)
\(9,\dfrac{x^2-81}{10x^2-90x}=\dfrac{\left(x-9\right)\left(x+9\right)}{10x\left(x-9\right)}=\dfrac{x+9}{10x}\Rightarrow M=10x\\ 10,\dfrac{2x^2+3x}{4x^2-9}=\dfrac{x\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{x}{2x-3}\Rightarrow A=x\)
\(9,M=\dfrac{\left(x+9\right)\left(10x^2-90x\right)}{x^2-81}=\dfrac{10x\left(x+9\right)\left(x-9\right)}{\left(x-9\right)\left(x+9\right)}=10x\\ 10,A=\dfrac{\left(2x-3\right)\left(2x^2+3x\right)}{4x^2-9}=\dfrac{x\left(2x+3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}=x\)
Chu vi đáy của viên phấn là \(3,14cm\)
Ta có : \(C=R.2.3,14=R.6,28\Rightarrow R=\dfrac{C}{6,28}=\dfrac{3,14}{6,28}=0,5\left(cm\right)\)
Thể tích của 1 viên phấn là :
\(V=3,14.R^2.h=3,14.0,5^2.12=9,42\left(cm^3\right)\)
Thể tích của 20 viên phấn là : \(9,42.20=188,4\left(cm^3\right)\)
Phần không gian bên trong hộp là :
\(200-188,4=11,6\left(cm^3\right)\)
a) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
b) \(=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
c) \(=\sqrt{\left(2\sqrt{2}+3\right)^2}=2\sqrt{2}+3\)
d) \(=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
e) \(=\sqrt{\left(4-\sqrt{6}\right)^2}=4-\sqrt{6}\)
f) \(=\sqrt{\left(3+\sqrt{7}\right)^2}=3+\sqrt{7}\)
l) \(=\sqrt{\left(\sqrt{2}-\dfrac{1}{2}\right)^2}=\sqrt{2}-\dfrac{1}{2}\)
m) \(=\sqrt{\left(2\sqrt{2}+\dfrac{1}{4}\right)^2}=2\sqrt{2}+\dfrac{1}{4}\)
Với m = 3 thì (d): y = 8x - 7
PTHĐGĐ của (P) và (d): \(x^2-8x+7=0\)
Có: \(a+b+c=1+\left(-8\right)+7=0\)
=> PT có 2 nghiệm phân biệt \(x_1=1;x_2=7\)
\(x_1=1\Rightarrow y_1=x_1^2=1^2=1\\ x_2=7\Rightarrow y_2=x_2^2=7^2=49\)
Tọa độ giao điểm của (P) và (d) là: \(\left(1;1\right);\left(7;49\right)\)
b)
PTHĐGĐ của (P) và (d) là:
\(x^2-2\left(m+1\right)x+3m-2=0\)
\(\Delta'=\left(m+1\right)^2-\left(3m-2\right)=m^2+2m+1-3m+2=m^2-m+3\\ =m^2-m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall m\)
Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=3m-2\end{matrix}\right.\)
Theo đề: \(x_1^2+x_2^2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)
\(\Leftrightarrow4m^2+8m+4-6m+4=20\\ \Leftrightarrow4m^2+2m+8-20=0\\ \Leftrightarrow4m^2+2m-12=0\\ \Leftrightarrow2m^2+m-6=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=-2\left(tm\right)\\m=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)
Gọi tọa độ của \(\left(P\right),\left(d\right)\) là \(A\left(x_A;y_A\right),B\left(x_B;y_B\right)\)
\(a,m=3\)
\(\Rightarrow x^2=2\left(3+1\right)x-3.3+2\)
\(\Rightarrow x^2-8x+7=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Thay \(x=7\) vào \(\left(P\right):y=x^2\Rightarrow y=7^2=49\)
Khi m = 3 thì đường thẳng \(\left(d\right):y=2\left(3+1\right)x-3.3+2=8x-7\)
Thay \(x=1\) vào \(\left(d\right):y=8x-7=8.1-7=1\)
Vậy \(A\left(7;49\right),B\left(1;1\right)\)
\(\Rightarrow y=\left(2m+2\right)x-3m+2\)
\(b,\) Vì \(\left(P\right)\) và \(\left(d\right)\) luôn cắt nhau tại 2 điểm pb A,B \(\forall m\) nên :
\(x^2=2\left(m+1\right)x-3m+2\Leftrightarrow x^2-2\left(m+1\right)x+3m-2\)
Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+2\\x_1x_2=\dfrac{c}{a}=3m-2\end{matrix}\right.\)
Ta có : \(x_1^2+x_2^2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\)
\(\Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)
\(\Leftrightarrow4m^2+8m+4-6m+4-20=0\)
\(\Leftrightarrow4m^2+2m-12=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m=-2\end{matrix}\right.\)
Vậy \(m=\dfrac{3}{2},m=-2\) thì thỏa mãn đề bài.
\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)
\(\Leftrightarrow-n^3+n⋮n^3+1\)
\(\Leftrightarrow n=1\)
mai bạn tách ra nha để vậy hơi nhiều
c1: theo ct: \(I=\dfrac{U}{R}\)=>U tỉ lệ thuận I =>I càng lớn thì U càng lớn
C2(bn làm đúng)
C3: \(=>Umax=Imax.R=40.\dfrac{250}{1000}=10V\)=>chọn C
c4: R1 nt(R2//R3) =>U2=U3 mà R2=R3=>I2=I3
\(=>I1=I2+I3=>I2=I3=\dfrac{I1}{2}\)
C5: R1 nt R2
mà \(I1=2A,I2=1,5A\)=>chọn I2\(=>I1=I2=Im=1,5A=>Umax=\left(R1+R2\right).1,5=90V\)
C6: R1//R2
\(=>U1=I1R1=30V,U2=I2R2=15V\)=.chọn U2
C7\(=>\dfrac{1}{RTd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=>Rtd=6\left(om\right)\)
C8-\(=>I=\dfrac{U}{\dfrac{R1R2}{R1+R2}}=0,9A\)
\(=>I1=\dfrac{U}{R1}=\dfrac{12}{20}=0,6A=>I2=0,3A\)
C9-\(=>U3=\left(\dfrac{U1}{R1}\right)R3=8V=>Um=U1+U2+U3=....\)
(thay số vào)
C10\(=>\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=>Rtd=......\)(thay số)
C11: các bóng đèn như nhau nên mắc vào chung 1 nguồn điện nối tiếp sẽ hoạt động với đúng cường độ dòng điện định mức nên các bóng đều sáng bth=>chọn B
C12 \(\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}\)=>chọn D
c13\(=>R=\dfrac{U}{I}=\dfrac{6}{0,3}=20\left(om\right)\)
c14 R1 nt R2
\(R1=\dfrac{3}{0,3}=10\left(om\right),R2=\dfrac{6}{0,5}=12\left(om\right)=>I1=I2=\dfrac{11}{R1+R2}=0,5A=>I1>I\left(đm1\right),I2=I\left(đm2\right)\)
=>đèn 1 sáng mạnh hơn bth có thể hỏng , đèn 2 sáng bth
c15.\(=>\dfrac{R1}{R2}=\dfrac{S2}{S1}=>\dfrac{R1}{6}=\dfrac{1}{3}=>R1=2\left(om\right)\)
c16.\(=>l=\dfrac{RS}{p}=\dfrac{\left(\dfrac{U}{I}\right)S}{p}=\dfrac{\left(\dfrac{220}{5}\right).2.10^{-6}}{0,4.10^{-6}}=220m\)
c17.=>\(S'=3S,=>l'=\dfrac{1}{3}l\)
\(=>\dfrac{R}{R'}=\dfrac{\dfrac{pl}{S}}{\dfrac{pl'}{S'}}=\dfrac{S'.l}{S.l'}=\dfrac{3S.l}{S.\dfrac{1}{3}.l}=9=>R=9R'=>R'=\dfrac{R}{9}=1\left(om\right)\)
c18.chọn dây dẫn R3 có l3=l2,S3=S1,chùng chất liệu đồng
\(=>\dfrac{R1}{R3}=\dfrac{l1}{l3}=>\dfrac{1,7}{R3}=\dfrac{100}{200}=>R3=3,4\left(om\right)\)
\(=>\dfrac{R2}{R3}=\dfrac{S3}{S2}=>\dfrac{17}{3,4}=\dfrac{10^{-6}}{S2}=>S2=2.10^{-7}m^2\)\(=0,2mm^2\)
c19 \(l1=8l2,S1=2S2\)
\(=>\dfrac{R1}{R2}=\dfrac{\dfrac{pl1}{S1}}{\dfrac{.pl2}{S2}}=\dfrac{S2.l1}{S1.l2}=\dfrac{S2.8l2}{2S2.l2}=4=>R1=4R2\)
c20.\(=>R=\dfrac{0,9}{15}=0,06\left(om\right)\)(đáp án đề sai)
c21\(=>l=\dfrac{RS}{p}=\dfrac{10.10^{-7}}{0,4.10^{-6}}=2,5m\)
c22\(=>R=\dfrac{pl}{S}=\dfrac{6.1;7.10^{-8}}{3,14.\left(\dfrac{0,0012}{2}\right)^2}=0,09\left(om\right)\)
17 qủa trứng ứng với phân số là:
1 - \(\dfrac{1}{5}\) - \(\dfrac{3}{8}\) = \(\dfrac{17}{40}\) ( số trứng)
Số trứng người đó đem bán là:
17 : \(\dfrac{17}{40}\) = 40 (quả)
Lần thứ nhất người đó bán:
40 \(\times\) \(\dfrac{1}{5}\) = 8 (quả)
Lần thứ hai người đó bán:
40 \(\times\) \(\dfrac{3}{8}\) = 15 (quả)
Đs...
17 qủa trứng ứng với phân số là:
1 - 1551 - 3883 = 17404017 ( số trứng)
Số trứng người đó đem bán là:
17 : 17404017 = 40 (quả)
Lần thứ nhất người đó bán:
40 ×× 1551 = 8 (quả)
Lần thứ hai người đó bán:
40 ×× 3883 = 15 (quả)
đáp số
Câu 3:
a. \(\dfrac{5}{12}+\dfrac{7}{12}\)=\(\dfrac{12}{12}=1\)
b. \(\dfrac{9}{4}-\dfrac{-7}{5}=\dfrac{45}{20}-\dfrac{-28}{20}=\dfrac{73}{20}\)
c.\(\dfrac{-5}{7}+\dfrac{3}{4}+\dfrac{-1}{5}+\dfrac{-2}{5}+\dfrac{1}{4}\)
=\(\left(\dfrac{-5}{7}+\dfrac{-2}{7}\right)+\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\dfrac{-1}{5}\)
=\(\dfrac{-7}{7}+\dfrac{4}{4}+\dfrac{-1}{5}\)
= -1+ 1 +\(\dfrac{-1}{5}\)
= 0 + \(\dfrac{-1}{5}\)=\(\dfrac{-1}{5}\)
a) 5/12+ 7/12
= 12/12
=1
b) 9/4- (-7/5)
= 9/4+ 7/5
=45/ 20+ 28/ 20
= 73/ 20