K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

Gọi thời gian mất điện là x (giờ); 

Thì thời gian cháy của cả 2 cây nến cũng là x (giờ).

Khả năng cháy còn lại của 2 cây nến lần lượt là: 5 - x (giờ) và 3 - x (giờ)

Khả năng cháy còn lại này tỷ lệ thuận với độ dài đoạn nến còn lại, theo đầu bài, Ta có:

\(\frac{5-x}{3-x}=3\Rightarrow5-x=9-3x\Rightarrow2x=4\Rightarrow x=2\)(giờ)

Vậy, thời gian mất điện là 2 giờ.

22 tháng 3 2018

1 giờ 36 phút

23 tháng 6 2019

1 giờ 36 phút

24 tháng 11 2015

ai tick mình rồi mình tick lại cho

24 tháng 11 2015

3\5 tich nhe

 

9 tháng 3 2017

AI trả lời đầu tiên thì mk tk.Phải đúng nữa.

26 tháng 3 2018

Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9. 

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là (a-3)/5.

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.

Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9. 

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là (a-3)/5.

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.

10 tháng 2 2017

Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9. 

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là (a-3)/5.

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.

10 tháng 2 2017

Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9. 

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là (a-3)/5.

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.