Phân tích đa thức thành nhân tử bằng cách kết hợp nhiều phương pháp
a) x2 . (x - 3) + 12 - 4x
b) x2 - 4 + (x - 2)2
c) x3 - 4x2 - 12x + 27
Làm rõ từng bước giúp e nhé! Thanks nhìu ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(25-x^2-y^2+2xy=5^2-\left(x^2-2xy+y^2\right)=5^2-\left(x-y\right)^2\)\(=\left(5-x+y\right)\left(5+x-y\right)\)
2) \(3x-3y-x^2+2xy-y^2\)\(=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)\(=3\left(x-y\right)-\left(x-y\right)^2\)\(=\left(x-y\right)\left(3-x+y\right)\)
1) \(25-x^2-y^2+2xy\)
\(=5^2-\left(x^2+y^2-2xy\right)\)
\(=5^2-\left(x-y\right)^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
2) \(3x-3y-x^2+2xy-y^2\)
\(=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=3\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)
\(=\left(3-x+y\right)\left(x-y\right)\)
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
a) \(x^3-\frac{1}{4}x=x\left(x^2-\frac{1}{4}\right)=x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\)
b) \(\left(2x-1\right)^2-\left(x+3\right)^2=\left(2x-1-x-3\right)\left(2x-1+x+3\right)=\left(x-4\right)\left(3x+2\right)\)
c) \(x^2-y^2-2y-1=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)
d) \(x^2\left(x-3\right)+12-4x=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-2^2\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
Phép tính b):
Đặt 2x - 1 = a ; x + 3 = b. Từ đầu bài suy ra:
\(\left(2x-1\right)^2-\left(x+3\right)^2\Rightarrow a^2-b^2\)
\(\Rightarrow a^2-b^2-\left(ab-ab\right)\Rightarrow\left(a^2-ab\right)-\left(b^2-ab\right)\)
\(\Rightarrow a\left(a-b\right)-b\left(b-a\right)\Rightarrow a\left(a-b\right)+b\left(a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)\)
Thế lại vào ta có:
\(\orbr{\begin{cases}a+b=\left(2x-1\right)+\left(x+3\right)=\left(2x+x\right)-\left(1-3\right)=3x+2\\a-b=\left(2x-1\right)-\left(x-3\right)=\left(2x-x\right)-\left(1-3\right)=x+2\end{cases}}\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)=\left(3x+2\right)\left(x+2\right)\)
a) x2 ( x+ 2y) -x -2y
= x2 ( x+ 2y) -(x+2y)
= (x2-1)(x+2y)
= (x-1)(x+1)(x+2y)
b)3x2- 3y2 -2 (x-y)2
= 3(x2-y2) -2 (x-y)2
= 3(x-y)(x+y)-2(x-y)(x-y)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\\ =\left(x-y\right)\left(3x+3y-2x+2y\right)\\ =\left(x-y\right)\left(x+5y\right)\)
c) x2- 2x-4y2 - 4y
= (x2-4y2)-(2x+4y)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\\ =\left(x+2y\right)\left(x-2y-2\right)\)
d) x3 - 4x2 - 9x +36
= (x3+3x2)-(7x2+21x)+(12x+36)
= x2(x+3)-7x(x+3)+12(x+3)
=(x2-7x+12)(x+3)
\(=\left[\left(x^2-3x\right)-\left(4x-12\right)\right]\left(x+3\right)\\ =\left[x\left(x-3\right)-4\left(x-3\right)\right]\left(x+3\right)=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
a: Ta có: \(x^2-4y^2-2x-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
c: Ta có: \(x^3+2x^2y-x-2y\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
e: Ta có: \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
f: Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
mk làm cho 1) các phần sau cũng z
1) = x2 - 22 + (x-2)2
= (x+2)(x-2) +(x-2)(x-2)
= (x-2)(x+2+x-2)
2x(x-2)
a) \(x^2\left(x-3\right)+12-4x=x^2\left(x-3\right)-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x^2-2^2\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(x+2\right)\)
b)\(x^2-4+\left(x-2\right)^2=x^2-2^2+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2+x-2\right)\)
\(=\left(x-2\right)2x\)
c)\(x^3-4x^2-12x+27=x^3+3x^2-7x^2-21x+9x+27\)
\(=x^2\left(x+3\right)-7x\left(x+3\right)+9\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
a) => x2.(x-3)-4(x-3)=(x-3)(x2-4)=(x-3)(x-2)(x+2)
b) => (x+2)(x-2)+(x-2)2=(x-2)(x+2+x-2)=2x(x-2)
c) => x3+27-(4x2+12x)=(x+3)(x2-3x+3)-4x(x+3)=(x+3)(x2-3x+3-4x)=(x-3)(x2-7x+3)