- Chứng minh rằng
A= \(5+5^2+5^3+.....+5^8\) chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30
a) \(C=5+5^2+5^3+...+5^8\)
\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(C=\left(5+25\right)+5^2\cdot\left(5+25\right)+5^4\cdot\left(5+25\right)+5^6\cdot\left(5+25\right)\)
\(C=30+5^2\cdot30+5^4\cdot30+5^6\cdot30\)
\(C=30\cdot\left(1+5^2+5^4+5^6\right)\)
Vậy C chia hết cho 30
b) \(D=2+2^2+2^3+...+2^{60}\)
\(D=2\left(1+2\right)+2^2\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(D=2\cdot3+2^2\cdot3+...+2^{59}\cdot3\)
\(D=3\cdot\left(2+2^2+...+2^{59}\right)\)
Vậy D chia hết cho 3
\(D=2+2^2+2^3+...+2^{60}\)
\(D=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(D=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(D=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy D chia hết cho 7
\(D=2+2^2+2^3+...+2^{60}\)
\(D=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(D=2\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)
\(D=2\cdot15+2^5\cdot15+...+2^{57}\cdot15\)
\(D=15\cdot\left(2+2^5+...+2^{57}\right)\)
Vậy D chia hết cho 15
a) C = 5 + 5² + 5³ + ... + 5⁸
= (5 + 5²) + 5².(5 + 5²) + 5⁴.(5 + 5²) + 5⁶.(5 + 5²)
= 30 + 5².30 + 5⁴.30 + 5⁶.30
= 30.(1 + 5² + 5⁴ + 5⁶) ⋮ 30
Vậy C ⋮ 30
b) *) Chứng minh D ⋮ 3
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Vậy D ⋮ 3 (1)
*) Chứng minh D ⋮ 7
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy D ⋮ 7 (2)
*) Chứng minh D ⋮ 15
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2 + 2² + 2³) + 2⁵.(1 + 2 + 2² + 2³) + 2⁵⁷.(1 + 2 + 2² + 2³)
= 2.15 + 2⁵.15 + ... + 2⁵⁷.15
= 15.(2 + 2⁵ + ... + 2⁵⁷) ⋮ 15
Vậy D ⋮ 15 (3)
Từ (1), (2), (3) suy ra D chia hết cho lần lượt 3; 7 và 15
1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)
Vậy chia hết cho 30
\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)
Vậy chia hết cho 31
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
A = 5 + 52 + 53 + .......+ 58
= (5+ 52) + ( 53 + 54 ) + (55 + 56) + (57 + 58)
= (5+ 52) + 52 (53 + 54) + 54 (55 + 56) + 56 (57 + 58)
= 30 + 52 . 30 + 54 . 30 + 56 . 30
= 30 ( 1 + 52 + 54 + 56)
=> A chia hết cho 30
Phân tích số 30 = 5 x 6
Mà tổng toàn 5 và 5 mũ từ 1 - 8 nên chia hết cho 5
chia hết cho 6 cũng là chia hết cho 2 và 3
cứ 2 số trong dãy cộng lại thì có tận cùng là 0 , có 8 số như vậy . Nên dãy số nãy cũng chia hết cho 2
2 số trong dãy cộng lại chia hết cho 3 , có 8 số 8 chia hết cho 2 nên dãy trên cũng chia hết cho 3
Kết luận : dãy trên chia hết cho 30
dê mà, thôi mik giải cho k mik vs nha
A = 5 + 5^2 + 5^3 + .......... + 5^8
5A = 5^2 + 5^3 + 5^4 + .................. + 5^9
5A - A = 5^2 + 5^3 + 5^4 + .................. + 5^9 - 5 - 5^2 - 5^3 - .......... - 5^8
4A = 5^9 - 5
Suy ra A = ( 5^9 - 5 ) : 4 = 488280 chia hết cho 30
đừng quên k nha
c) C = 5 + 52 + 53 +...+ 58
= ( 5 + 52 ) + ( 53 + 54 ) + ( 55 + 56 ) + ( 57 + 58 )
= 5 + 52 + 52( 5 + 52 ) + 54( 5 + 52 ) + 56( 5 + 52 )
= 5 + 52 ( 1 + 52 + 54 + 56 )
= 30. ( 1 + 52 + 54 + 56 ) chia hết cho 30
Vậy C = 5 + 52 + 53 +...+ 58 chia hết cho 30
b) B = 165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215(25 + 1)
= 215.33 chia hết cho 33
Vậy B = 165 + 215 chia hết cho 33
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)
\(=30+5^2\left(5+5^2\right)+...+5^{78}\left(5+5^2\right)\)
\(=30\left(1+5^2+...+5^{78}\right)⋮30\)
\(A=5+5^2+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=1.\left(5+5^2\right)+5.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=\left(1+5+...+5^6\right)\left(5+5^2\right)\)
\(=\left(1+5+...+5^6\right).30\)chia hết cho 30.
\(A=5+5^2+5^3+........+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=1.\left(5+5^2\right)+5.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=1.30+5.30+...+5^6.30\)
\(=\left(1+5+...+5^6\right)30\text{chia hết cho 30.}\)