cho S = 4/3*7+4/7*11+4/11*15+4/15*19+........=664/1995
a.tìm số hạng cuối của dãy S
b.tổng S có bao nhiêu số hang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. S = 1/3 - 1/7 + 1/7 - 1/11 + ... = 664/1995
=>S = 1/3 - 1/X = 664/1995 => X = 1995
Vậy số hạng cuối cùng sẽ = 1/(1995-4) - 1/(1995) = 4/1991x1995
b. Dể dàng nhận thấy dạng tổng quát của các số hạn là : 4/(4n-1)[4(n+1)-1] với n=1,2,3....
Do số hạn cuối cùng của dãy là 4/1991x1995 nên (4n-1)[4(n+1)-1] = 1991x1995
=> n = 498.
Vậy dãy có 498 số hạn.
----------------------------------
Chúc bạn vui!
\(S=\frac{4}{3\times7}+\frac{4}{7\times11}+\frac{4}{11\times15}+...+\frac{4}{\left(4x-1\right)\times\left(4x+3\right)}\)
\(=\frac{7-3}{3\times7}+\frac{11-4}{7\times11}+\frac{15-11}{11\times15}+...+\frac{\left(4x+3\right)-\left(4x-1\right)}{\left(4x-1\right)\times\left(4x+3\right)}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{4x-1}-\frac{1}{4x+3}\)
\(=\frac{1}{3}-\frac{1}{4x+3}=\frac{664}{1995}\)
\(\Leftrightarrow\frac{1}{4x+3}=\frac{1}{1995}\)
\(\Leftrightarrow4x+3=1995\)
\(\Leftrightarrow x=498\).
Số hạng cuối cùng của dãy \(S\)là: \(\frac{1}{1991\times1995}\).
Tổng \(S\)có \(498\)số hạng.
7/11 .4/15 +11/15 . 7/11